Volume 41 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
ZHANG Xin, LI Shuangfei, SUN Daiyuan. Vulnerability Analysis of China-Europe Container Sea-rail Intermodal Transport Network[J]. Journal of Transport Information and Safety, 2023, 41(3): 48-58. doi: 10.3963/j.jssn.1674-4861.2023.03.006
Citation: ZHANG Xin, LI Shuangfei, SUN Daiyuan. Vulnerability Analysis of China-Europe Container Sea-rail Intermodal Transport Network[J]. Journal of Transport Information and Safety, 2023, 41(3): 48-58. doi: 10.3963/j.jssn.1674-4861.2023.03.006

Vulnerability Analysis of China-Europe Container Sea-rail Intermodal Transport Network

doi: 10.3963/j.jssn.1674-4861.2023.03.006
  • Received Date: 2022-12-07
    Available Online: 2023-09-16
  • The China-Europe trade transportation involves multiple ports and rail stations, forming a complex transport network. The hub nodes of this network are vulnerable to various disruptions such as natural disasters and safety incidents, resulting in partial connectivity and consequently affecting the overall efficiency of the network. To quantitatively analyze the extent of functional changes in the China-Europe container intermodal transport network following the failure of hub nodes, a composite sea-rail transport network is developed based on the China-Europe rail services and shipping lines. On this basis, a simulation model is proposed to investigate the network vulnerability by integrating a load-capacity cascading failure model. The model considers three influencing factors: node capacity, attack methods, and load distribution strategies. The network connectivity and efficiency are set as the vulnerability indices. The simulation model is used to analyze the factors influencing the network vulnerability and its evolution, and to identify critical nodes by examining the change curve of network efficiency. The results reveal that the China-Europe container sea-rail intermodal transport network consists of 167 nodes, exhibiting scale-free and small-world characteristics, with a degree correlation coefficient of 0.13, indicating weak assortativity. The nodes with similar correlation degrees tend to be connected. Intentional attacks on hub nodes render the network more vulnerable compared to random failures. With 3 failed nodes, the intentional attacks result in a 20.15% decrease in network connectivity and a 37.19% decrease in efficiency compared to random failures. From the perspective of influential factors, strategies redistributing load based on geographic distance exacerbate network collapse. The increasing node capacity enhances network robustness, reaching a critical threshold when the capacity redundancy coefficient reaches 0.2, at which point external interference no longer affects the overall network. The negative impact of port failures on network efficiency surpasses that of railway stations, with European ports having a higher impact than Chinese ports. Regarding the critical node identification, the efficiency reduction is most substantial when the Constanta Port in Europe fails, decreasing by 88%. In the Chinese region, both Shanghai and Ningbo ports experience a reduction of 76%. These findings aid in understanding the vulnerability factors affecting the China-Europe container sea-rail intermodal transport network. It suggests the prioritization of protecting critical nodes during emergencies and optimizing cargo flow distribution to enhance robustness of the network in the event of partial hub node failures.

     

  • loading
  • [1]
    赵靓, 田德新. 共生视角下中国大运河经济的新发展——基于苏伊士运河的堵塞问题[J]. 中国水运, 2022(5): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG202205005.htm

    ZHAO L, TIAN D X. The new development of the Grand Canal economy of China from the perspective of symbiosis: based on the blockage problem of Suez Canal[J]. China Water Transport, 2022(5): 18-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG202205005.htm
    [2]
    WATTS D J, STROGATZ S H. Collective dynamics of "small-world" networks[J]. Nature, 1998, 393: 440-442. doi: 10.1038/30918
    [3]
    BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. doi: 10.1126/science.286.5439.509
    [4]
    WOOLLEYMEZA O, THIEMANN C, GRADY D, et al. Complexity in human transportation networks: A comparative analysis of worldwide air transportation and global cargo-ship movements[J]. The European Physical Journal B, 2011, 84 (4): 589-600. doi: 10.1140/epjb/e2011-20208-9
    [5]
    关晓光, 李振福, 丁超君, 等. 世界集装箱港口复杂网络级联失效下的鲁棒性分析[J]. 中国航海, 2021, 44(2): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH202102015.htm

    GUAN X G, LI Z F, DING C J, et al. Robustness of global network of container terminals[J]. Navigation of China, 2021, 44(2): 84-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH202102015.htm
    [6]
    吴姗, 韩晓龙, 刘婵娟, 等. 基于复杂网络的全球海运网络脆弱性分析[J]. 计算机工程与应用, 2018, 54(15): 249-254. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201815042.htm

    WU S, HAN X L, LIU C J, et al. Vulnerability analysis of global container shipping network based on complex network[J]. Computer Engineering and Applications, 2018, 54 (15): 249-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201815042.htm
    [7]
    吴迪, 王宇鹏, 盛世杰, 等. "21世纪海上丝绸之路"集装箱海运网络的脆弱性变化[J]. 地理学报, 2022, 77(8): 2067-2082. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202208013.htm

    WU D, WANG Y P, SHENG S J, et al. Vulnerability changes of the Maritime Silk Road container shipping network under intentional attacks[J]. Acta Geographica Sinica, 2022, 77(8): 2067-2082. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202208013.htm
    [8]
    张欣, 孙代源. 基于复杂网络的全球集装箱海运网络脆弱性分析[J]. 重庆交通大学学报(自然科学版), 2022, 41(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202202001.htm

    ZHANG X, SUN D Y. Vulnerability analysis of global container shipping network based on complex network[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(2): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202202001.htm
    [9]
    胡岳, 黄丽娜, 任福. "21世纪海上丝绸之路"有向复杂航运网络抗毁性研究[J]. 地理信息世界, 2020, 27(1): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK202001007.htm

    HU Y, HUANG L N, REN F. Investigating the invulnerability of complex shipping networks on the"21st Century Maritime Silk Road"[J]. Geomatics World, 2020, 27(1): 26-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK202001007.htm
    [10]
    魏海蕊. 我国内陆省国际物流网络连通性分析——以中欧班列为例[J/OL]. (2023-7)[2023-07-24]. http://kns.cnki.net/kcms/detail/50.1154.C.20230711.1516.002.html.

    WEI H R. Analysis on the connectivity of international logistics network in inland provinces of China: taking China Railway Express as an example[J/OL]. (2023-7)[2023-07-24]. http://kns.cnki.net/kcms/detail/50.1154.C.20230711.1516.002.html. (in Chinese)
    [11]
    赵瑞琳, 牟海波, 肖丁, 等. 基于复杂网络理论的城轨线网抗毁性对比分析[J]. 交通信息与安全, 2021, 39(3): 41-49. doi: 10.3963/j.jssn.1674-4861.2021.03.006

    ZHAO R L, MOU H B, XIAO D, et al. A contrastive analysis of survivability of urban rail network based on complex network theory[J]. Journal of Transport Information and Safety, 2021, 39(3): 41-49. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.03.006
    [12]
    刘婵娟, 胡志华. "21世纪海上丝绸之路"海运网络空间格局及其复杂性研究[J]. 世界地理研究, 2018, 27(3): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDJ201803002.htm

    LIU C, HU Z. Spatial pattern and complexity of the 21st Century Maritime Silk Road shipping network[J]. World Regional Studies, 2018, 27(3): 11-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDJ201803002.htm
    [13]
    JIN L, CHEN J, CHEN Z, et al. Impact of COVID-19 on China's international liner shipping network based on AIS data[J]. Transport Policy, 2022, 121: 90-99.
    [14]
    WAN C, ZHAO Y, ZHANG D, et al. Identifying important ports in maritime container shipping networks along the Maritime Silk Road[J]. Ocean & Coastal Management, 2021, 211 (11): 105738.
    [15]
    BOCCALETTI S, BIANCONI G, CRIADO R, et al. The structure and dynamics of multilayer networks[J]. Physics Reports, 2014, 544(1): 1-122.
    [16]
    赵娜, 柴焰明, 尹春林, 等. 基于最大连通子图相对效能的相依网络鲁棒性分析[J]. 电子科技大学学报, 2021, 50(4): 627-633. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202104022.htm

    ZHAO N, CHAI Y M, YIN C L, et al. Robustness analysis of interdependent networks based on the largest-component relative efficiency[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(4): 627-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202104022.htm
    [17]
    许波桅, 唐灿璇, 李军军. 级联失效下海港-陆港集装箱运输网络鲁棒性分析[J]. 交通运输系统工程与信息, 2023, 23 (3): 265-279. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202303028.htm

    XU B G, TANG C X, LI J J. Robustness analysis of seaport-dry port container transport networks under cascading failure[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(3): 265-279. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202303028.htm
    [18]
    梁倬骞, 付丹龙, 邓原. 级联过程中基于动态信息的负载重分配策略[J]. 计算机工程与科学, 2017, 39(9): 1638-1644. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK201709009.htm

    LIANG Z Q, FU D L, DENG Y. A load redistribution strategy based on dynamic information in cascading process[J]. Computer Engineering & Science, 2017, 39(9): 1638-1644. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK201709009.htm
    [19]
    赵爽. 不完全信息攻击策略下航空运输网络级联抗毁性仿真[J]. 物流工程与管理, 2023, 45(4): 109-112, 140. https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY202304029.htm

    ZHAO S. Simulation of network cascade survivability of air transport under lncomplete lnformation attack strategy[J]. Logistics Engineering and Management, 2023, 45(4): 109-112, 140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY202304029.htm
    [20]
    刘青霞, 王邦. 网络弹性与恢复机制的研究综述[J]. 信息安全学报, 2021, 6(4): 44-59. https://www.cnki.com.cn/Article/CJFDTOTAL-XAXB202104003.htm

    LIU Q X, WANG B. Network resilience and recovery mechanism: A review[J]. Journal of Cyber Security, 2021, 6(4): 44-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAXB202104003.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Article Metrics

    Article views (488) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return