Volume 41 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
CUI Wenyue, GU Yuanli, ZHAO Shengli, RUI Xiaoping. A Method of Predicting Short-term Traffic Flows Based on a DGC-GRU Model[J]. Journal of Transport Information and Safety, 2023, 41(2): 121-128. doi: 10.3963/j.jssn.1674-4861.2023.02.013
Citation: CUI Wenyue, GU Yuanli, ZHAO Shengli, RUI Xiaoping. A Method of Predicting Short-term Traffic Flows Based on a DGC-GRU Model[J]. Journal of Transport Information and Safety, 2023, 41(2): 121-128. doi: 10.3963/j.jssn.1674-4861.2023.02.013

A Method of Predicting Short-term Traffic Flows Based on a DGC-GRU Model

doi: 10.3963/j.jssn.1674-4861.2023.02.013
  • Received Date: 2022-02-22
    Available Online: 2023-06-19
  • In order to study the spatiotemporal characteristics of traffic flows on urban expressways which have not been fully explored in previous studies, a shortterm prediction method for traffic flow on urban expressways is proposed, in order to improve the prediction accuracy and efficiency based on a combined model of directed graph convolutional neural networks and gated recurrent units (DGC-GRU). The proposed method uses a spatial correlation matrix, which is also combined with a graph convolutional neural network. A directed graph convolutional neural network (DG-CNN) is developed to characterize the directionality and variability of traffic flows. Traffic flow parameters are input into the DG-CNN to obtain the directed graph convolution operator, and the directed graph convolution operator is introduced into the gated loop unit. The DG-CNN and the gated loop unit are used to capture spatial and temporal features of traffic flow, respectively, and are combined to predict traffic flow on expressways. Traffic flow data collected from a Ring Expressway of the City of Seattle is used for experiment analysis, in order to compare the performance of the proposed prediction models. Study results show that the convergence speed of the proposed DGC-GRU model is faster than other baseline models, and the mean absolute error (MAE) and mean absolute percentage error (MAPE) of the DGC-GRU model are smaller than those of the baseline models, given the same dataset and parameter settings. Compared with traditional GRU, GCN, and DGC-LSTM models, the DGC-GRU model reduces the MAE by 33.01%, 5.76%, 1.32%, and MAPE by 27.75%, 11.15%, 7.76%, respectively, which indicate that the DGC-GRU model can effectively study the spatiotemporal characteristics of traffic flows of the urban expressway network and has a better performance on prediction accuracy and efficiency than the compared models.

     

  • loading
  • [1]
    陈喜群, 周凌霄, 曹震. 基于图卷积网络的路网短时交通流预测研究[J]. 交通运输系统工程与信息, 2020, 20(4): 49-55. doi: 10.16097/j.cnki.1009-6744.2020.04.008

    CHEN X Q, ZHOU L X, CAO Z. Shortterm network-wide traffic prediction based on graph convolutional network[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 49-55. (in Chinese) doi: 10.16097/j.cnki.1009-6744.2020.04.008
    [2]
    ZHOU T, HAN G Q, XU X M, et al. A learningbased multimodel integrated framework for dynamic traffic flow forecasting[J]. Neural Processing Letters, 2019, 49(1): 407-430. doi: 10.1007/s11063-018-9804-x
    [3]
    ZENG B, LI C. Improved multi-variable grey forecasting model with a dynamic backgroundvalue coefficient and its application[J]. Computers & Industrial Engineering, 2018, 118(4): 278-290.
    [4]
    高洪波, 张登银. 基于分形与三次指数平滑的交通流量预测模型[J]. 南京邮电大学学报(自然科学版), 2018, 38(6): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYD201806014.htm

    GAO H B, ZHANG D Y. Traffic flow forecasting model based on fractal and cubic exponential smoothing[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2018, 38(6): 63-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJYD201806014.htm
    [5]
    ZHOU T, JIANG D Z, LIN Z Z, et al. Hybrid dual Kalman filtering model for shortterm traffic flow forecasting[J]. IET Intelligent Transport Systems, 2019, 13(6): 1023-1032. doi: 10.1049/iet-its.2018.5385
    [6]
    DING C, DUAN J X, ZHANG Y R, et al. Using an ARI-MA-GARCH modeling approach to improve subway shortterm ridership forecasting accounting for dynamic vola-tility[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(4): 1054-1064. doi: 10.1109/TITS.2017.2711046
    [7]
    肖宇, 赵建有, 叱干都, 等. 基于XGBoost的短时出租车速度预测模型[J]. 交通信息与安全, 2022, 40(3): 163-170. doi: 10.3963/j.jssn.1674-4861.2022.03.017

    XIAO Y, ZHAO J Y, CHI G D, et al. A shortterm prediction model for taxi speed based on XGBoost[J]. Journal of Transport Information and Safety, 2022, 40(3): 163-170. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.017
    [8]
    CHENG S F, LU F, PENG P, et al. Short-term traffic forecast-ing: An adaptive ST-KNN model that considers spatial heterogeneity[J]. Computers, Environment and Urban Systems, 2018, 71(9): 186-198.
    [9]
    傅成红, 杨书敏, 张阳. 改进支持向量回归机的短时交通流预测[J]. 交通运输系统工程与信息, 2019, 19(4): 130-134, 148. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201904019.htm

    FU C H, YANG S M, ZHANG Y. Promoted shortterm traffic flow prediction model based on deep learning and sup-port vector regression[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 130-134, 148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201904019.htm
    [10]
    MA X L, YU H Y, WANG Y P, et al. Largescale transportation network congestion evolution prediction using deep learning theory[J]. Plos One, 2015, 10(3): 1-17.
    [11]
    YU R, LI Y G, SHAHABI C, et al. Deep learning: A generic approach for extreme condition traffic forecasting[C]. The 2017 SIAM International Conference on Data Mining, Houston, United States: Society for Industrial and Applied Mathe-matics, 2017.
    [12]
    FU R, ZHANG Z, LI L. Using LSTM and GRU neural net-work methods for traffic flow prediction[C]. 31st Youth Academic Annual Conference of Chinese Association of Automation(YAC), Wuhan, China: IEEE, 2016.
    [13]
    倪庆剑, 彭文强, 张志政, 等. 基于信息增强传输的时空图神经网络交通流预测[J]. 计算机研究与发展, 2022, 59(2): 282-293. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ202202004.htm

    NI Q J, PENG W Q, ZHANG Z Z, et al. Spatial-Temporal graph neural network for traffic flow prediction based on information enhanced transmission[J]. Journal of Computer Research and Development, 2022, 59(2): 282-293. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ202202004.htm
    [14]
    CUI Z Y, HENRICKSON K, KE R M, et al. Traffic graph convolutional recurrent neural network: A deep learning framework for networkscale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4883-4894.
    [15]
    闫旭, 范晓亮, 郑传潘, 等. 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1147-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202006011.htm

    YAN X, FAN X L, ZHENG C P, et al. Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of Zhejiang University(Engineering Sci-ence), 2020, 54(6): 1147-1155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202006011.htm
    [16]
    谷振宇, 陈聪, 郑家佳, 等. 基于时空图卷积循环神经网络的交通流预测[J]. 控制与决策, 2022, 37(3): 645-653. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202203012.htm

    GU Z Y, CHEN C, ZHENG J J, et al. Traffic flow prediction based on STG-CRNN[J]. Control and Decision, 2022, 37(3): 645-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202203012.htm
    [17]
    SENG D W, LU F S, LIANG Z Y, et al. Forecasting traffic flows in irregular regions with multi-graph convolutional network and gated recurrent unit[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22 (9): 1179-1194.
    [18]
    曾筠程, 邵敏华, 孙立军, 等. 基于有向图卷积神经网络的交通预测与拥堵管控[J]. 中国公路学报, 2021, 34(12): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112018.htm

    ZENG Y C, SHAO M H, SUN L J, et al. Traffic prediction and congestion control based on directed graph convolution neural network[J]. China Journal of Highway and Transport, 2021, 34(12): 239-248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112018.htm
    [19]
    DANEL T, SPUREK P, TABOR J, et al. Spatial graph convolutional networks[C]. International Conference on Neural Information Processing, Berlin, Germany: Springer, 2020.
    [20]
    LI L, ZHU H G, WEN L B, et al. An approach of combining convolution neural network and graph convolution network to predict the progression of myopia[J]. Neural Process Lett, 2023, 55(1): 247-257.
    [21]
    ALI A, ZHU Y M, ZAKARYA M. Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction[J]. Neural Networks, 2022, 145(1): 233-247.
    [22]
    陈喜群, 曹震, 沈楼涛, 等. 融合路段传输模型和深度学习的城市路网短时交通流状态预测[J]. 中国公路学报, 2021, 34(12): 203-216. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112015.htm

    CHEN X Q, CAO Z, SHEN L T, et al. Short-term traffic-state prediction of urban road networks based on the fusion of a link-transmission model and deep learning[J]. China Journal of Highway and Transport, 2021, 34(12): 203-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112015.htm
    [23]
    王康. 基于深度学习的城市短时交通流拥堵预测研究[D]. 武汉: 武汉大学, 2019.

    WANG K. Research on urban shortterm traffic congestion prediction based on deep learning[D]. Wuhan: Wuhan University, 2019. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (528) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return