Volume 40 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
SHI Feng, TAO Kejian, HUANG Liwen, XIE Cheng. A Study of Configuration Model and Safety Analysis for Ship-to-ship Transfers of Liquefied Natural Gas[J]. Journal of Transport Information and Safety, 2022, 40(6): 53-62. doi: 10.3963/j.jssn.1674-4861.2022.06.006
Citation: SHI Feng, TAO Kejian, HUANG Liwen, XIE Cheng. A Study of Configuration Model and Safety Analysis for Ship-to-ship Transfers of Liquefied Natural Gas[J]. Journal of Transport Information and Safety, 2022, 40(6): 53-62. doi: 10.3963/j.jssn.1674-4861.2022.06.006

A Study of Configuration Model and Safety Analysis for Ship-to-ship Transfers of Liquefied Natural Gas

doi: 10.3963/j.jssn.1674-4861.2022.06.006
  • Received Date: 2022-01-14
    Available Online: 2023-03-27
  • To address the problem of equipment selection and configuration for LNG ship-to-ship barge operation, a configuration model is systematically developed based on the multi-level fuzzy comprehensive evaluation analysis.A quantitative analysis method is proposed to calculate the stability of LNG ship-to-ship transfer equipment. Taking145 000 m3 and 60 000 m3 LNG ships as test objects, simulation analysis of the assembly configuration system is carried out based on the Computational Fluid Dynamics(CFD) method. The goodness of fit analysis under the simulated conditions are carried out based on the configuration model of LNG ship-to-ship transfer operation. According to the results, the goodness of fit of the selection and configuration of LNG ship-to-ship transfer under the simulated working condition is 0.85, whose error between the optimal value is 15% that is within the allowable range of 20%.It verifies the proposed LNG ship-to-ship transfer select and configuration model. Meanwhile, the LNG ship-to-ship transfer operation is restricted by the visibility greater than 1 000 m, a wind speed of less than 10.8 m/s, a flow rate of less than 2.5 n mile/h, and a safety zone radius of 1 210 meters. The configuration model can not only be used to provide quantitative safety analysis of the configuration for LNG ship-to-ship transfer equipment, but also to set up the environmental restriction conditions of LNG ship-to-ship transfer operation.

     

  • loading
  • [1]
    李剑, 佘源琦, 高阳, 等. 中国天然气产业发展形势与前景[J]. 天然气工业, 2020, 40(4): 133-142. doi: 10.3787/j.issn.1000-0976.2020.04.017

    LI J, SHE Y Q, GAO Y, et al. Natural gas industry in China: Development situation and prospect[J]. Natural Gas Industry, 2020, 40(4): 133-142. (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.04.017
    [2]
    马金晶, 皇甫立霞, 韩力, 等. 国内外LNG内河运输安全标准现状及展望[J]. 天然气工业, 2015, 35(12): 117-123. doi: 10.3787/j.issn.1000-0976.2015.12.018

    MA J J, HUANGPU L X, HAN L, et al. Current status and prospect of LNG inland water transportation safety standards at home and abroad[J]. Natural Gas Industry, 2015, 35(12): 117-123. (in Chinese) doi: 10.3787/j.issn.1000-0976.2015.12.018
    [3]
    梅强, 胡勤友, 刘希亮, 等. 全球LNG海上运输网络演化及中国贸易现状分析[J]. 地球信息科学学报, 2022, 24(9): 1701-1716. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202209006.htm

    MEI Q, HU Q Y, LIU X L, et al. Evolution of global LNG maritime transport network and analysis of China's trade status[J]. Journal of Geoinformation Science, 2022, 24(9): 1701-1716. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202209006.htm
    [4]
    于文杰, 郭国平, 吴兵. 基于模糊故障树的长江LNG船舶装卸作业风险预测[J]. 交通信息与安全, 2019, 37(5): 46-53. doi: 10.3963/j.issn.1674-4861.2019.05.007

    YU W J, GUO G P, WU B. Risk prediction of LNG ships during loading/unloading in the Yangtze river based on fuzzy fault tree[J]. Journal of Transport Information and Safety, 2019, 37(5): 46-53. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.05.007
    [5]
    SUN L P, HE Q. Safety assessment for a side-by-side offloading mooring system[J]. Journal of Marine Science and Application, 2011, 10(3): 315-320. doi: 10.1007/s11804-011-1074-1
    [6]
    GU J Y, YANG J M, LU H N. Numerical simulations and model tests of the mooring characteristic of a tension leg platform under random waves[J]. China Ocean Engineering, 2013, 27(5): 563-578. doi: 10.1007/s13344-013-0048-2
    [7]
    徐铁, 危强. 超大型LNG船舶靠离泊所需拖船总功率研究[J]. 船海工程, 2014, 43(2): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC201402027.htm

    XU T, WEI Q. Research on total power of tugs for ultra large LNG carrier's berthing and unberthing[J]. Ship and Ocean Engineering, 2014, 43(2): 97-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC201402027.htm
    [8]
    张明霞, 裴斐, 刘镇方, 等. 基于AQWA的FPSO串靠提油作业中的拖船适用性评估[J]. 中国海洋平台, 2017, 32(4): 34-42. doi: 10.3969/j.issn.1001-4500.2017.04.006

    ZHANG M X, PEI P, LIU Z F, et al. Suitability assessment of tug for offloading in Tandem between FPSO and shuttle tanker based on AQWA[J]. China Offshore Platform, 2017, 32(4): 34-42. (in Chinese) doi: 10.3969/j.issn.1001-4500.2017.04.006
    [9]
    YUE J, KANG W, MAO W, et al. Prediction of dynamic responses of FSRU-LNGC side-by-side mooring system[J]. Ocean Engineering, 2019(195): 106731.
    [10]
    施兴华, 于泽群, 章柯, 等. FPSO与穿梭油船的旁靠时域分析及系统优化[J]. 中国舰船研究, 2020, 15(1): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202001016.htm

    SHI X H, YU Z Q, ZHANG K, et al. Time domain analysis and system optimization of side-by-side mooring for FPSO and shuttle tanker[J]. Chinese Journal of Ship Research, 2020, 15(1): 127-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202001016.htm
    [11]
    张新福, 王琦, 吴立洋. 并靠状态下潜没式护舷力学性能分析[J]. 船舶工程, 2020, 42(10): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202010017.htm

    ZHANG X F, WANG Q, WU L Y. Analysis of mechanical properties of submerged fender under side-by-side condition[J]. Ship Engineering, 2020, 42(10): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202010017.htm
    [12]
    齐奎利, 赵亚坤, 刘磊, 等. LNG旁靠FSRU码头系泊的水动力性能试验研究[J]. 船舶力学, 2021, 25(6): 760-771. doi: 10.3969/j.issn.1007-7294.2021.06.008

    QI K L, ZHAO Y K, LIU L, et al. Experimental investigation on the hydrodynamic performance of quay-moored FSRU and LNG carrier[J]. Journal of Ship Mechanics, 2021, 25(6): 760-771. (in Chinese) doi: 10.3969/j.issn.1007-7294.2021.06.008
    [13]
    SULTANA S, OKOH P, HAUGEN S, et al. Hazard analysis: Application of STPA to ship-to-ship transfer of LNG[J]. Journal of Loss Prevention in the Process Industries, 2019(60): 241-252.
    [14]
    朱明昌, 黄立文, 谢澄, 等. 基于STAMP/STPA的LNG船对船过驳系统安全性分析[J]. 交通信息与安全, 2021, 39(6): 44-53. doi: 10.3963/j.jssn.1674-4861.2021.06.006

    ZHU M C, HUANG L W, XIE C, et al. Safety analysis of LNG ship-to-ship transit system based on STAMP/STPA[J]. Journal of Transport Information and Safety, 2021, 39(6): 44-53. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.06.006
    [15]
    TAM J H. Overview of performing shore-to-ship and ship-to-ship compatibility studies for LNG bunker vessels[J]. Journal of Marine Engineering and Technology, 2020, 21(5): 1-14.
    [16]
    ZOU L, LARSSON L. Numerical predictions of ship-to-ship interaction in shallow water[J]. Ocean Engineering, 2013(72): 386-402.
    [17]
    李永福, 梁圣荧, 矫珊珊, 等. 大型LNG船系泊安全分析[J]. 船舶与海洋工程, 2020, 36(3): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SHZC202003002.htm

    LI Y F, LIANG S Y, JIAO S S, et al. Large LNG carrier mooring safety evaluation[J]. Naval Architecture and Ocean Engineering, 2020, 36(3): 5-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHZC202003002.htm
    [18]
    孟祥玮, 高学平, 张文忠, 等. 波浪作用下船舶系缆力的计算方法[J]. 天津大学学报(自然科学与工程技术版), 2011, 44(7): 593-596. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201107007.htm

    MENG X W, GAO X P, ZHANG W Z, et al. A calculation method of mooring force induced by waves[J]. Journal of Tianjin University(Science and Technology), 2011, 44(7): 593-596. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201107007.htm
    [19]
    Oil Companies International Marine Forum. Mooring equipment guidelines[S]. Glasgow: Bell & Bain Ltd, 2018.
    [20]
    中华人民共和国交通部. 港口工程荷载规范: JTS 144-1—2010[S]. 北京: 人民交通出版社, 2010.

    Ministry of Transport, People's Republic of China. Load code for harbour engineering: JTS 144-1—2010[S]. Beijing: China Communications Press, 2010. (in Chinese)
    [21]
    Oil Companies International Marine Forum. Ship to ship transfer guide for petroleum: Chemicals and liquefied Gases[S]. Glasgow: Bell & Bain Ltd, 2013.
    [22]
    MAKSYM K, DAVID A W. LNG cargo Handing-1: new approach improves ship-to-ship LNG transfers[J]. Oil and Gas Journal, 2017, 115(11): 65-70.
    [23]
    于洋. 海洋运输船舶首锚重量统计分析[J]. 大连海事大学学报, 2016, 42(4): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201604006.htm

    YU Y. A statistic analysis of bow anchor weights of sea-going merchant ships[J]. Journal of Dalian Maritime University, 2016, 42(4): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201604006.htm
    [24]
    SANO M, YASUKAWA H. Maneuverability of a combined two-ship unit engaged in underway transfer[J]. Ocean Engineering, 2019(173): 774-793.
    [25]
    GAUVIN B. Two big ASD tugs custom-designed for moving LNG tankers[J]. Professional Mariner, 2012(154): 24-25.
    [26]
    XIE C, DENG J, ZHUANG Y, et al. Estimating oil pollution risk in environmentally sensitive areas of petrochemical terminals based on a stochastic numerical simulation[J]. Marine Pollution Bulletin, 2017, 123(1/2): 241-252.
    [27]
    文元桥, 杜磊, 王乐, 等. LNG船舶锚泊安全距离定量计算建模[J]. 安全与环境学报, 2015, 15(4): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201504030.htm

    WEN Y Q, DU L, WANG L, et al. Quantitative model for determining the safety distance of anchoring LNG carriers[J]. Journal of Safety and Environment, 2015, 15(4): 134-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201504030.htm
    [28]
    乐京霞, 康伟利, 陈鹏飞, 等. FSRU-LNGC旁靠作业运动响应[J]. 船舶工程, 2019, 41(1): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201901024.htm

    YUE J X, KANG W L, CHEN P F, et al. Dynamic response of the FSRU-LNGC in side-by-side operation[J]. Ship Engineering, 2019, 41(1): 110-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201901024.htm
    [29]
    DECO A, FRANGOPOL D M. Real-time risk of ship structures integrating structural health monitoring data: Application to multi-objective optimal ship routing[J]. Ocean Engineering, 2015(96): 312-329.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(8)

    Article Metrics

    Article views (549) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return