留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人机交互系统影响下城市无信号交叉口驾驶人负荷和行为特性

鞠云杰 陈丰

鞠云杰, 陈丰. 人机交互系统影响下城市无信号交叉口驾驶人负荷和行为特性[J]. 交通信息与安全, 2025, 43(4): 129-138. doi: 10.3963/j.jssn.1674-4861.2025.04.013
引用本文: 鞠云杰, 陈丰. 人机交互系统影响下城市无信号交叉口驾驶人负荷和行为特性[J]. 交通信息与安全, 2025, 43(4): 129-138. doi: 10.3963/j.jssn.1674-4861.2025.04.013
JU Yunjie, CHEN Feng. Driver Workload and Behavioral Characteristics at Urban Unsignalized Intersections Under the Influence of Human-machine Interaction Systems[J]. Journal of Transport Information and Safety, 2025, 43(4): 129-138. doi: 10.3963/j.jssn.1674-4861.2025.04.013
Citation: JU Yunjie, CHEN Feng. Driver Workload and Behavioral Characteristics at Urban Unsignalized Intersections Under the Influence of Human-machine Interaction Systems[J]. Journal of Transport Information and Safety, 2025, 43(4): 129-138. doi: 10.3963/j.jssn.1674-4861.2025.04.013

人机交互系统影响下城市无信号交叉口驾驶人负荷和行为特性

doi: 10.3963/j.jssn.1674-4861.2025.04.013
基金项目: 

国家重点研发计划项目 2023YFB2504403

详细信息
    作者简介:

    鞠云杰(1995—),博士研究生. 研究方向:交通安全. E-mail:yunjieju@tongji.edu.cn

    通讯作者:

    陈丰(1982—),博士,教授. 研究方向:交通安全、风工程等. E-mail:fengchen@tongji.edu.cn

  • 中图分类号: U491.6+2

Driver Workload and Behavioral Characteristics at Urban Unsignalized Intersections Under the Influence of Human-machine Interaction Systems

  • 摘要: 人机交互系统(human-machine interaction system, HMIs)在提升驾驶体验方面发挥着至关重要的作用。然而,额外交互信息的引入是否会导致驾驶人工作负荷超载以及其对行为绩效的影响尚不明确。为此,本研究招募29名被试进行驾驶模拟器试验,测量检测-响应任务(detection response task,DRT)、美国航空航天局认知负荷指数(national aeronautics and space administration task load index,NASA-TLX)和驾驶行为参数,分析不同人机交互系统和冲突类型下的驾驶人工作负荷和行为特性,并考虑其交互效应。结果表明:①DRT结果显示:在综合视听信息影响下,驾驶人的DRT响应时间减少12.1%且命中率增加5.8%~48.5%,意味着驾驶人建立了高级别的态势感知,能够分配更多认知资源响应DRT请求。此外,交叉冲突环境中的驾驶人需要频繁监控周边交通环境以确定其他道路使用者位置和运动轨迹,致使DRT响应时间增加14.8%,命中率减少22.6%;②基于NASA-TLX测量的主观负荷结果显示,综合视听信息作用下的个人努力维度得分减少21.7%~22.8%,驾驶人认为他们可以比其他人更轻松地达到预期性能水平;驾驶人感受到的时间压力减少19.8%,驾驶节奏舒缓且从容;挫败感维度得分减少31.4%~32.9%,不安全、气馁、烦躁、紧张和恼怒等负面情绪减少;③由于应对安全关键事件的充足空间和时间裕度,具有综合视听信息的驾驶人的速度标准差、加速噪声和横向偏移标准差分别减少32.1%、26.9%和7.1%,驾驶更加平稳、舒适感更强、车道保持能力和横向控制稳定性更好。

     

  • 图  1  固定基座驾驶模拟器

    Figure  1.  Fixed-base driving simulator

    图  2  人机交互界面中的视觉反馈信息

    Figure  2.  Visual feedback in human-machine interaction interfaces

    图  3  目标指向不同方向的4×4箭头矩阵

    Figure  3.  4×4 arrow matrix with targets pointing in different directions

    图  4  驾驶人与测试车辆在无信号控制交叉口的交互和冲突

    Figure  4.  Driver interaction and conflict with test vehicles at unsignalized intersections

    图  5  驾驶模拟试验流程

    Figure  5.  Driving simulator experimental procedure

    图  6  统计检验标准流程(单因素/两因素重复测量方差分析)

    Figure  6.  Standardized procedure for statistical tests(one-way/two-way repeated measures ANOVA)

    图  7  人机交互系统和冲突类型对DRT响应时间的主效应

    Figure  7.  Main effects of HMIs and conflict type on DRT response time

    图  8  人机交互系统和冲突类型对DRT响应时间的主效应

    Figure  8.  Main effects of HMIs and conflict type on DRT response time

    图  9  不同冲突类型下的DRT命中率

    Figure  9.  DRT hit rates for different conflict types

    图  10  不同人机交互系统的NASA-TLX维度得分

    Figure  10.  NASA-TLX dimension scores for different HMIs

    图  11  不同人机交互系统的速度标准差

    Figure  11.  Standard deviation of speed for different HMIs

    图  12  不同人机交互系统的加速噪声

    Figure  12.  Acceleration noise for different HMIs

    图  13  不同人机交互系统的横向偏移标准差

    Figure  13.  Standard deviation of lateral offset for different HMIs

  • [1] LI X, VAEZIPOUR A, RAKOTONIRAINY A, et al. Exploring drivers' mental workload and visual demand while using an in-vehicle HMI for eco-safe driving[J]. Accident Analysis & Prevention, 2020, 146: 105756.
    [2] 高岩, 曾涛, 张树林, 等. 车载智能终端使用对驾驶分心的影响[J]. 人类工效学, 2019, 25(5): 75-80.

    GAO Y, ZENG T, ZHANG S L, et al. Effects of in-vehicle smart terminal use on driving distractions[J]. Chinese Journal of Ergonomics, 2019, 25(5): 75-80. (in Chinese)
    [3] HOUTENBOS M, DE WINTER J C F, HALE A R, et al. Concurrent audio-visual feedback for supporting drivers at intersections: a study using two linked driving simulators[J]. Applied Ergonomics, 2017, 60: 30-42. doi: 10.1016/j.apergo.2016.10.010
    [4] VAEZIPOUR A, RAKOTONIRAINY A, HAWORTH N, et al. A simulator study of the effect of incentive on adoption and effectiveness of an in-vehicle human machine interface[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 60: 383-398. doi: 10.1016/j.trf.2018.10.030
    [5] MCILROY R C, STANTON N A, GODWIN L, et al. Encouraging eco-driving with visual, auditory, and vibrotactile stimuli[J]. IEEE Transactions on Human-Machine Systems, 2016, 47(5): 661-672.
    [6] RETTENMAIER M, ALBERS D, BENGLER K. After you?! -use of external human-machine interfaces in road bottleneck scenarios[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 70: 175-190. doi: 10.1016/j.trf.2020.03.004
    [7] XU Q, FU R, WU F, et al. A speed limit advisory system provided by in-vehicle HMI considering auditory perception characteristics for connected environment[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 92: 353-368. doi: 10.1016/j.trf.2022.12.004
    [8] WANG Y G, LYU N C, WU C Z, et al. Investigating the impact of HMI on drivers' merging performance in intelligent connected vehicle environment[J]. Accident Analysis & Prevention, 2024, 198, 107448.
    [9] OVIEDO-TRESPALACIOS O, NANDAVAR S, HAWORTH N. How do perceptions of risk and other psychological factors influence the use of in-vehicle information systems (IVIS)?[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 67: 113-122. doi: 10.1016/j.trf.2019.10.011
    [10] 岳李圣飒, 潘昱蓉, 孙剑, 等. 智能汽车变道盲区影像对驾驶人认知负荷与安全性的影响[J]. 同济大学学报(自然科学版), 2024, 52(6): 864-874, 885.

    YUE-LI S S, PAN Y R, SUN J, et al. Effects of blind area display of intelligent vehicles on drivers' cognitive load and safety during lane change[J]. Journal of Tongji University (Natural Science), 2024, 52(6): 864-874, 885. (in Chinese)
    [11] 潘福全, 王满福, 张丽霞, 等. 海底隧道出入口区域驾驶人视觉负荷建模分析[J]. 公路, 2024, 69(3): 267-276.

    PAN F Q, WANG M F, ZHANG L X, et al. Analysis and modeling of drivers' visual load at entrance and exit areas of undersea tunnel[J]. Highway, 2024, 69(3): 267-276. (in Chinese)
    [12] GRAICHEN L, GRAICHEN M, KREMS J F. Evaluation of gesture-based in-vehicle interaction: user experience and the potential to reduce driver distraction[J]. Human Factors, 2019, 61(5): 774-792. doi: 10.1177/0018720818824253
    [13] MAAG C, SCHÖMIG N, NAUJOKS F, et al. Measuring workload effects of augmented reality head-up displays using detection response task[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 92: 201-219. doi: 10.1016/j.trf.2022.11.010
    [14] VAEZIPOUR A, RAKOTONIRAINY A, HAWORTH N, et al. A simulator evaluation of in-vehicle human machine interfaces for eco-safe driving[J]. Transportation Research Part A: Policy and Practice, 2018, 118: 696-713. doi: 10.1016/j.tra.2018.10.022
    [15] SHAKOURI M, IKUMA L H, AGHAZADEH F, et al. Analysis of the sensitivity of heart rate variability and subjective workload measures in a driving simulator: the case of highway work zones[J]. International Journal of Industrial Ergonomics, 2018, 66: 136-145. doi: 10.1016/j.ergon.2018.02.015
    [16] YARED T, PATTERSON P. The impact of navigation system display size and environmental illumination on young driver mental workload[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 74: 330-344. doi: 10.1016/j.trf.2020.08.027
    [17] HOWARD J, BOWDEN V K, VISSER T. Do action video games make safer drivers? The effects of video game experience on simulated driving performance[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 97: 170-180. doi: 10.1016/j.trf.2023.07.006
    [18] ÖZTÜRK İ, MERAT N, ROWER R, et al. The effect of cognitive load on detection-response task(DRT)performance during day-and night-time driving: a driving simulator study with young and older drivers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 97: 155-169. doi: 10.1016/j.trf.2023.07.002
    [19] TREISMAN A. Features and objects: the fourteenth bartlett memorial lecture[J]. The Quarterly Journal of Experimental Psychology Section A, 1988, 40(2): 201-237. doi: 10.1080/02724988843000104
    [20] 赵晓华, 鞠云杰, 李佳, 等. 基于驾驶行为和视觉特性的长大隧道突起路标作用效果评估[J]. 中国公路学报, 2020, 33 (6): 29-41.

    ZHAO X H, JU Y J, LI J, et al. Evaluation of the effect of RPMs in extra-long tunnels based on driving behavior and visual characteristics[J]. China Journal of Highway and Transport, 2020, 33(6): 29-41. (in Chinese)
    [21] 赵晓华, 董文慧, 鞠云杰, 等. 基于驾驶模拟的隧道交通安全设施综合效用评价及影响机理研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(10): 7-15, 25.

    ZHAO X H, DONG W H, JU Y J, et al. Comprehensive utility evaluation and influence mechanism of traffic safety facilities in tunnel based on driving simulation[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41 (10): 7-15, 25. (in Chinese)
    [22] 陈志贵, 王雪松, 张晓春, 等. 山区高速公路驾驶人加减速行为建模[J]. 中国公路学报, 2020, 33(7): 167-175.

    CHEN Z G, WANG X S, ZHANG X C, et al. Modeling of driver acceleration and deceleration behavior in mountain freeways[J]. China Journal of Highway and Transport, 2020, 33(7): 167-175. (in Chinese)
    [23] BIAN Y, ZHANG X L, Wu Y P, et al. Influence of prompt timing and messages of an audio navigation system on driver behavior on an urban expressway with five exits[J]. Accident Analysis & Prevention, 2021, 157: 106155.
    [24] ZHAO X H, XU W X, MA J M, et al. Effects of connected vehicle-based variable speed limit under different foggy conditions based on simulated driving[J]. Accident Analysis & Prevention, 2019, 128: 206-216.
    [25] HUANG L H, ZHAO X H, LI Y, et al. Optimal design alternatives of advance guide signs of closely spaced exit ramps on urban expressways[J]. Accident Analysis & Prevention, 2020, 138: 105465.
    [26] VON JANCZEWSKI N, KRAUS J, ENGELN A, et al. A subjective one-item measure based on NASA-TLX to assess cognitive workload in driver-vehicle interaction[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 86: 210-225. doi: 10.1016/j.trf.2022.02.012
    [27] FERGUSON C J. An effect size primer: a guide for clinicians and researchers[J]. Professional Psychology: Research and Practice, 2009, 40(5), 532-538. doi: 10.1037/a0015808
    [28] YASIR A, SHARMA A, HAQUE M M, et al. The impact of the connected environment on driving behavior and safety: a driving simulator study[J]. Accident Analysis & Prevention, 2020, 144: 105643.
    [29] YASIR A, ZHENG Z, HAQUE M M, et al. Understanding the discretionary lane-changing behaviour in the connected environment[J]. Accident Analysis & Prevention, 2020, 137: 105463.
    [30] HERMAN R, MONTROLL E W, POTTS R B, et al. Traffic dynamics: analysis of stability in car following[J]. Operations Research, 1959, 7(1): 86-106. doi: 10.1287/opre.7.1.86
    [31] SAIFUZZAMAN, M, HAQUE, M M, ZHENG Z, et al. 2015. Impact of mobile phone use on car-following behaviour ofyoung drivers[J]. Accident Analysis & Prevention, 2015, 82, 10-19.
    [32] 高岩, 罗毅, 尤志栋, 等. 手机操作类型对驾驶人跟车行为的影响[J]. 中国公路学报, 2018, 31(4): 1-9, 58.

    GAO Y, LUO Y, YOU Z D, et al. Influence of operating types of smart phone on drivers' car following behavior[J]. China Journal of Highway and Transport, 2018, 31(4): 1-9, 58. (in Chinese)
    [33] 罗霜, 易鑫鑫, 邵毅明, 等. 城市道路下分心行为对驾驶人驾驶绩效的影响[J]. 中国安全科学学报, 2024, 34(1): 70-76.

    LUO S, YI X X, SHAO Y M, et al. Influences of distracted behaviors on driving performance of drivers in city[J]. China Safety Science Journal, 2024, 34(1): 70-76. (in Chinese)
    [34] YE S, CHEN T T, OVIEDO-TRESPALACIOS O, et al. Investigating work-related distraction's impact on male taxi driver safety: a hazard-based duration model[J]. Analytic Methods in Accident Research, 2024, 44: 100350. doi: 10.1016/j.amar.2024.100350
    [35] XU Z G, ZHANG K F, MIN H G, et al. What drives people to accept automated vehicles? findings from a field experiment[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 320-334. doi: 10.1016/j.trc.2018.07.024
    [36] HAQUE, M M, WASHINGTON S. A parametric duration model of the reaction times of drivers distracted by mobile phone conversations[J]. Accident Analysis & Prevention, 2014, 62, 42-53.
    [37] YASIR A, HAQUE M M. Modelling braking behaviour of distracted young drivers in car-following interactions: a grouped random parameters duration model with heterogeneity-in-means[J]. Accident Analysis & Prevention, 2023, 185: 107015.
  • 加载中
图(13)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-01

目录

    /

    返回文章
    返回