留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高原山区无人机运动轨迹规划及能耗评估模型

伍景琼 田娜 陈子伟 奠然 李云起

伍景琼, 田娜, 陈子伟, 奠然, 李云起. 高原山区无人机运动轨迹规划及能耗评估模型[J]. 交通信息与安全, 2025, 43(4): 98-109. doi: 10.3963/j.jssn.1674-4861.2025.04.010
引用本文: 伍景琼, 田娜, 陈子伟, 奠然, 李云起. 高原山区无人机运动轨迹规划及能耗评估模型[J]. 交通信息与安全, 2025, 43(4): 98-109. doi: 10.3963/j.jssn.1674-4861.2025.04.010
WU Jingqiong, TIAN Na, CHEN Ziwei, DIAN Ran, LI Yunqi. Trajectory Planning and Energy Consumption Evaluation Model of UAVs in Plateau and Mountainous Areas[J]. Journal of Transport Information and Safety, 2025, 43(4): 98-109. doi: 10.3963/j.jssn.1674-4861.2025.04.010
Citation: WU Jingqiong, TIAN Na, CHEN Ziwei, DIAN Ran, LI Yunqi. Trajectory Planning and Energy Consumption Evaluation Model of UAVs in Plateau and Mountainous Areas[J]. Journal of Transport Information and Safety, 2025, 43(4): 98-109. doi: 10.3963/j.jssn.1674-4861.2025.04.010

高原山区无人机运动轨迹规划及能耗评估模型

doi: 10.3963/j.jssn.1674-4861.2025.04.010
基金项目: 

国家自然科学基金项目 71904068

云南省“兴滇英才支持计划”青年人才项目 XDYC-QNRC-2023-0122

云南省大学生创新训练项目 S202410674149

详细信息
    通讯作者:

    伍景琼(1984—),博士,副教授. 研究方向:物流系统优化、冷链物流等. E-mail:mote_1984@163.com

  • 中图分类号: U8

Trajectory Planning and Energy Consumption Evaluation Model of UAVs in Plateau and Mountainous Areas

  • 摘要: 为解决无人机在高原山区复杂地形环境下的路径规划与能耗评估不精准的问题,研究了基于高分辨率数字高程模型的三维运动轨迹规划与电池容量评估方法。以无人机飞行的地形适应性为核心,利用高分辨率数字高程数据构建三维数字地形图,综合考虑飞行范围、飞行高度和路径精度约束,建立以路径长度最小化、高度变化最小化和偏转角最小化为目标的加权优化函数,构建高原山区无人机三维运动轨迹规划模型,从而能够准确反映地形起伏对飞行轨迹的影响。进一步修正空间直线路径与实际飞行航迹的偏差,量化横向距离飞行与纵向高度爬升对单位能耗的影响,构建无人机电池容量评估模型,并开展能耗分析。以云南省迪庆州香格里拉市建塘镇吉迪村为案例,规划松茸交易市场与15个采集点间的无人机飞行轨迹,并对耗电进行精准评估。结果表明:修正后飞行路径比直线距离增加264~724 m,修正率为2.85%~18.94%,平均修正值438 m,平均修正率7.64%;单点单向运输任务总能耗集中在28%~58%,显示出一定的任务扩展潜力。在所有航线中,识别出38条能耗超过正常分布范围的潜在风险路线,以及4条能耗明显偏高的高风险路线。通过采用低能耗替代路段、选择高效机型和设置中途补给站等策略,可有效降低能耗风险,提升无人机在高原山区的运输可行性。

     

  • 图  1  高原山区数字地形图

    Figure  1.  Digital topographic map in plateau mountainous area

    图  2  高原山区无人机实际飞行情况

    Figure  2.  The actual flight situation of UAV in plateau mountainous area

    图  3  采集点整体分布图

    Figure  3.  The overall distribution map of the collection points

    图  4  各算法收敛曲线对比

    Figure  4.  Comparison of convergence curves of various algorithms

    图  5  无人机飞行距离修正值热图

    Figure  5.  UAV flight distance correction value heat map

    图  6  无人机飞行距离修正率热图

    Figure  6.  UAV flight distance correction rate heat map

    图  7  5↔6无人机运动轨迹规划

    Figure  7.  5↔6 UAV trajectory planning

    图  8  2↔3无人机运动轨迹规划

    Figure  8.  2↔3 UAV trajectory planning

    图  9  2↔4无人机运动轨迹规划

    Figure  9.  2↔4 UAV trajectory planning

    图  10  2↔14无人机运动轨迹规划

    Figure  10.  2↔14 UAV trajectory planning

    图  11  高原山区无人机能耗百分比热图

    Figure  11.  Percentage heat map of UAV energy consumption in plateau mountainous area

    表  1  DBO算法主要运行参数设置

    Table  1.   Input volume of external road

    参数符号 参数含义 参数取值
    nPop 种群数规模 30
    MaxIt 最大迭代次数 50
    n Var 变量的数量 3N
    Var Min 解空间的下界 0
    Var Max 解空间的上界 1
    CostFunction 成本函数 minJcost
    下载: 导出CSV

    表  2  模型参变量设置

    Table  2.   Model parameter setting

    类别 符号 参变量含义 参变量取值
    目标函数参数 ω1 飞行距离成本函数权重 0.5
    ω2 飞行高度成本函数权重 0.3
    ω3 飞行偏转角成本函数权重 0.2
    约束条件参数 hsafe 无人机安全飞行高度 100
    n 路径精度系数 1
    变量 Q1(x1, y1, z1) 无人机起点坐标 根据求解需要设置
    QN(xN, yN, zN) 无人机终点坐标 根据求解需要设置
    下载: 导出CSV

    表  3  采集点地理坐标信息

    Table  3.   Collect the geographic coordinate information of the point

    序号 经度/(°) 纬度/(°) 高度/m
    0 99.655 7 28.040 4 3 348
    1 99.639 6 28.094 0 3 518
    2 99.676 3 28.093 8 3 708
    3 99.663 2 28.074 0 3 441
    4 99.669 0 28.105 1 3 751
    5 99.712 6 28.043 2 3 458
    6 99.609 0 28.108 2 3 554
    7 99.622 6 28.095 1 3 661
    8 99.618 2 28.011 3 3 517
    9 99.622 6 28.069 6 3 542
    10 99.680 1 28.008 7 3 500
    11 99.684 0 28.046 5 3 437
    12 99.694 3 28.069 3 3 514
    13 99.624 3 28.044 9 3 380
    14 99.606 3 28.027 1 3 591
    15 99.639 6 28.002 1 3 509
    下载: 导出CSV

    表  4  三维欧氏距离矩阵

    Table  4.   Three-dimensional Euclidean distance matrix 单位: km

    dj di
    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    0 0 6.152 9 6.268 5 3.799 0 7.303 5 5.607 3 8.812 1 6.890 8 4.904 4 4.595 8 4.259 3 2.866 4 4.971 1 3.129 2 5.084 8 4.535 4
    1 6.152 9 0 3.613 9 3.210 9 3.150 6 9.125 8 3.396 0 1.682 2 9.408 4 3.180 5 10.263 0 6.842 2 6.036 4 5.650 1 8.109 3 10.190 0
    2 6.268 5 3.613 9 0 2.559 5 1.444 7 6.655 0 6.809 0 5.282 6 10.788 2 5.926 0 9.445 8 5.306 1 3.248 3 7.460 8 10.105 6 10.791 8
    3 3.799 0 3.210 9 2.559 5 0 3.509 0 5.939 2 6.542 0 4.632 8 8.242 4 4.024 0 7.429 2 3.672 0 3.103 6 5.005 5 7.641 7 8.303 8
    4 7.303 5 3.150 6 1.444 7 3.509 0 0 8.098 4 5.912 6 4.696 1 11.541 4 6.029 8 10.747 7 6.670 5 4.690 9 8.001 4 10.623 7 11.784 0
    5 5.607 3 9.125 8 6.655 0 5.939 2 8.098 4 0 12.480 6 10.560 0 9.939 0 9.324 6 4.986 1 2.837 3 3.408 6 8.688 9 10.610 3 8.506 7
    6 8.812 1 3.396 0 6.809 0 6.542 0 5.912 6 12.480 6 0 1.977 3 10.782 6 4.484 2 13.062 7 10.060 9 9.432 1 7.180 4 8.996 6 12.143 6
    7 6.890 8 1.682 2 5.282 6 4.632 8 4.696 1 10.560 0 1.977 3 0 9.303 2 2.830 0 11.126 6 8.096 8 7.610 8 5.575 9 7.709 0 10.447 9
    8 4.904 4 9.408 4 10.788 2 8.242 4 11.541 4 9.939 0 10.782 6 9.303 2 0 6.478 9 6.098 2 7.559 9 9.869 6 3.776 1 2.108 5 2.340 0
    9 4.595 8 3.180 5 5.926 0 4.024 0 6.029 8 9.324 6 4.484 2 2.830 0 6.478 9 0 8.809 1 6.561 0 7.052 0 2.748 6 4.978 1 7.669 2
    10 4.259 3 10.263 0 9.445 8 7.429 2 10.747 7 4.986 1 13.062 7 11.126 6 6.098 2 8.809 1 0 4.209 3 6.863 1 6.802 0 7.543 6 4.052 3
    11 2.866 4 6.842 2 5.306 1 3.672 0 6.670 5 2.837 3 10.060 9 8.096 8 7.559 9 6.561 0 4.209 3 0 2.724 6 5.875 8 7.942 7 6.582 3
    12 4.971 1 6.036 4 3.248 3 3.103 6 4.690 9 3.408 6 9.432 1 7.610 8 9.869 6 7.052 0 6.863 1 2.724 6 0 7.399 1 9.840 8 9.191 4
    13 3.129 2 5.650 1 7.460 8 5.005 5 8.001 4 8.688 9 7.180 4 5.575 9 3.776 1 2.748 6 6.802 0 5.875 8 7.399 1 0 2.660 1 4.980 4
    14 5.084 8 8.109 3 10.105 6 7.641 7 10.623 7 10.610 3 8.996 6 7.709 0 2.108 5 4.978 1 7.543 6 7.942 7 9.840 8 2.660 1 0 4.292 8
    15 4.535 4 10.190 0 10.791 8 8.303 8 11.784 0 8.506 7 12.143 6 10.447 9 2.340 0 7.669 2 4.052 3 6.582 3 9.191 4 4.980 4 4.292 8 0
    下载: 导出CSV

    表  5  各算法对比结果

    Table  5.   Comparison results of various algorithms

    算法 平均最优值 平均运行时间/s
    DBO 589.18 30.55
    ABC 627.82 65.43
    GA 685.66 29.74
    DE 631.87 29.63
    下载: 导出CSV

    表  6  无人机飞行近似距离矩阵

    Table  6.   UAV flight approximate distance matrix 单位: km

    d'j d'i
    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    0 0 6.669 8 6.753 3 4.280 9 7.972 0 6.068 7 9.446 8 7.394 1 5.272 0 4.893 7 4.736 4 3.192 2 5.468 1 3.483 2 5.437 2 4.911 5
    1 6.669 8 0 3.964 9 3.533 1 3.424 3 9.710 4 3.760 1 1.982 7 9.909 9 3.589 2 10.971 7 7.330 7 6.515 7 6.161 5 8.555 1 10.623 3
    2 6.753 3 3.964 9 0 2.823 6 1.718 3 7.083 4 7.238 1 5.647 8 11.131 2 6.250 2 9.946 3 5.706 4 3.519 2 7.799 3 10.393 7 11.158 7
    3 4.280 9 3.533 1 2.823 6 0 3.930 0 6.416 9 7.029 0 5.026 0 8.698 6 4.455 6 8.106 3 4.107 6 3.488 5 5.465 4 8.047 8 8.833 7
    4 7.972 0 3.424 3 1.718 3 3.930 0 0 8.621 4 6.295 5 5.005 4 11.878 7 6.380 2 11.387 4 7.116 9 5.065 7 8.343 5 10.938 7 12.170 6
    5 6.068 7 9.710 4 7.083 4 6.416 9 8.621 4 0 13.204 7 11.156 2 10.416 3 9.825 4 5.441 1 3.155 1 3.810 2 9.290 1 11.087 6 8.958 9
    6 9.446 8 3.760 1 7.238 1 7.029 0 6.295 5 13.204 7 0 2.269 1 11.437 3 4.936 6 13.745 9 10.770 4 10.052 4 7.743 1 9.506 5 12.792 0
    7 7.394 1 1.982 7 5.647 8 5.026 0 5.005 4 11.156 2 2.269 1 0 9.827 6 3.218 9 11.701 0 8.659 7 8.131 8 6.091 6 8.095 3 10.899 3
    8 5.272 0 9.909 9 11.131 2 8.698 6 11.878 7 10.416 3 11.437 3 9.827 6 0 6.825 3 6.394 5 7.968 5 10.400 0 4.118 5 2.440 0 2.642 9
    9 4.893 7 3.589 2 6.250 2 4.455 6 6.380 2 9.825 4 4.936 6 3.218 9 6.825 3 0 9.182 9 6.915 6 7.622 0 3.063 8 5.257 5 8.102 7
    10 4.736 4 10.971 7 9.946 3 8.106 3 11.387 4 5.441 1 13.745 9 11.701 0 6.394 5 9.182 9 0 4.555 8 7.308 5 7.218 1 7.869 5 4.345 5
    11 3.192 2 7.330 7 5.706 4 4.107 6 7.116 9 3.155 1 10.770 4 8.659 7 7.968 5 6.915 6 4.555 8 0 3.065 1 6.284 4 8.342 6 7.046 0
    12 5.468 1 6.515 7 3.519 2 3.488 5 5.065 7 3.810 2 10.052 4 8.131 8 10.400 0 7.622 0 7.308 5 3.065 1 0 7.944 3 10.278 4 9.710 4
    13 3.483 2 6.161 5 7.799 3 5.465 4 8.343 5 9.290 1 7.743 1 6.091 6 4.118 5 3.063 8 7.218 1 6.284 4 7.944 3 0 2.950 2 5.363 9
    14 5.437 2 8.555 1 10.393 7 8.047 8 10.938 7 11.087 6 9.506 5 8.095 3 2.440 0 5.257 5 7.869 5 8.342 6 10.278 4 2.950 2 0 4.702 3
    15 4.911 5 10.623 3 11.158 7 8.833 7 12.170 6 8.958 9 12.792 0 10.899 3 2.642 9 8.102 7 4.345 5 7.046 0 9.710 4 5.363 9 4.702 3 0
    下载: 导出CSV

    表  7  关键飞行路线信息

    Table  7.   Key flight route information collation

    飞行路线(采集点) 空间直线距离/km 目标函数值 飞行近似距离/km 距离修正值/m 距离修正率/%
    5↔6 12.480 6 1 687.089 13.204 7 724 5.80
    2↔3 2.559 5 438.234 5 2.823 6 264 10.32
    2↔4 1.444 7 319.847 5 1.718 3 274 18.94
    2↔14 10.105 6 439.687 6 10.393 7 288 2.85
    下载: 导出CSV

    表  8  能耗情况统计

    Table  8.   Energy consumption statistics 单位: %

    统计指标 Max Min Avg SD Med
    距离能耗 68.73 8.59 35.31 14.22 35.19
    爬升能耗 16.89 2.97 7.62 3.11 7.28
    总能耗平均值 80.10 13.93 42.92 14.95 42.15
    下载: 导出CSV
  • [1] HOMIER V, BROUARD D, NOLAN M, et al. Drone versus ground delivery of simulated blood products to an urban trauma center: the Montreal Medi-Drone pilot study[J]. Journal of Trauma and Acute Care Surgery, 2021, 90(3): 515-521. doi: 10.1097/TA.0000000000002961
    [2] WILTSHIRE M, BOXSHALL J, MILNE J, et al. The effects of drone transportation on blood component quality: a prospective randomised controlled laboratory study[J]. British Journal of Haematology. 2024, 205(5): 2022-2030. doi: 10.1111/bjh.19666
    [3] 胡志华, 魏月荷, 田曦丹. 海岛无人机多模式应急配送模型与算法研究[J]. 大连理工大学学报, 2024, 64(6): 649-660.

    HU Z H, WEI Y H, TIAN X D. Island drone multi-mode emergency delivery model and algorithm research[J]. Journal of Dalian University of Technology, 2024, 64(6): 649-660. (in Chinese)
    [4] 徐红艳, 柳国梁, 刘华琼. 县-村配送模式下无人机三维路径规划[J]. 山东交通学院学报, 2024, 32(4): 14-19, 56.

    XU H Y, LIU G L, LIU H Q. Three-dimensional path planning for drones under county-village delivery mode[J]. Journal of Shandong Jiaotong University, 2024, 32(4): 14-19, 56. (in Chinese)
    [5] 刘文倩, 单梁, 张伟龙, 等. 复杂环境下基于改进Informed RRT的无人机路径规划算法[J]. 上海交通大学学报, 2024, 58(4): 511-524.

    LIU W Q, SHAN L, ZHANG W L, et al. UAV path planning algorithm based on improved informed RRT in complex environments[J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 511-524. (in Chinese)
    [6] 韩韧, 高煜杰, 张生. 无人机辅助边缘计算环境下的路径策略研究[J]. 建模与仿真, 2023, 12(6): 5949-5958.

    HAN R, GAO Y J, ZHANG S. Research on path strategy in UAV-assisted edge computing environments[J]. Modeling and Simulation, 2023, 12(6): 5949-5958. (in Chinese)
    [7] 张红蕾, 盛志超, 叶林, 等. 基于多传感器融合的无人机自主避障方法[J]. 激光杂志, 2024, 45(1): 229-235.

    ZHANG H L, SHENG Z Z, YE L, et al. Autonomous obstacle avoidance method for UAVs based on multi-sensor fusion[J]. Laser Journal, 2024, 45(1): 229-235. (in Chinese)
    [8] CHIARADONNA S, JEVTI P, LANCHIER N. Cyber risk loss distribution for various scale drone delivery systems[J]. Risk Sciences, 2025, 1(10): 100009.
    [9] 余子杰, 郑征, 李清东, 等. 基于深度强化学习的太阳能无人机航迹规划[J]. 航空学报, 2025, 46(12): 275-295.

    YU Z J, ZHENG Z, LI Q D, et al. Trajectory planning for solar-powered UAVs based on deep reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(12): 275-295. (in Chinese)
    [10] 邓文乾, 赖颖杰, 张世昂, 等. 面向农田环境的农业多机器人协同技术研究进展[J]. 中国农机化学报, 2024, 45(10): 289-297.

    DENG W Q, LAI Y J, ZHANG S A, et al. Research progress on cooperative technology of agricultural multi-robots in farmland environments[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(10): 289-297. (in Chinese)
    [11] ALEJANDRO P, DANIEL R, EURICO P, et al. Q-Learning based system for path planning with unmanned aerial vehicles swarms in obstacle environments[J]. Expert Systems With Applications, 2024, 235(1): 121240.
    [12] ZHUGE S, XU X, HE Y, et al. 3-D motion trajectory measurement for the target through a multi-UAVs system[J]. Measurement, 2022, 204(11): 112088.
    [13] IVIC S, CRNKOVIC B, GRBCIC L, et al. Multi-UAV trajectory planning for 3D visual inspection of complex structures[J]. Automation in Construction, 2023, 147 (3): 104709.
    [14] 陈朋, 汤粤生, 俞天纬, 等. 三维场景的实时无人机航迹规划方法[J]. 小型微型计算机系统, 2020, 41(9): 1800-1805.

    CHEN P, TANG Y S, YU T W, et al. Real-time UAV trajectory planning method for 3D scenes[J]. Journal of Small and Micro Computers, 2020, 41(9): 1800-1805. (in Chinese)
    [15] 付兴武, 胡洋. 基于改进粒子群算法的三维路径规划[J]. 电光与控制, 2021, 28(3): 86-89.

    FU X W, HU Y. Three-dimensional path planning based on improved particle swarm optimization algorithm[J]. Electronics Optics & Control, 2021, 28(3): 86-89. (in Chinese)
    [16] 黄书召, 田军委, 乔路, 等. 基于改进遗传算法的无人机路径规划[J]. 计算机应用, 2021, 41(2): 390-397.

    HUANG S Z, TIAN J W, QIAO L, et al. UAV path planning based on improved genetic algorithm[J]. Computer Applications, 2021, 41(2): 390-397. (in Chinese)
    [17] 黄鹤, 吴琨, 王会峰, 等. 基于改进飞蛾扑火算法的无人机低空突防路径规划[J]. 中国惯性技术学报, 2021, 29(2): 256-263.

    HUANG H, WU K, WANG H F, et al. UAV low-altitude penetration path planning based on improved moth flame optimization algorithm[J]. Journal of China Inertial Technology, 2021, 29(2): 256-263. (in Chinese)
    [18] 邹泽海, 郑恩辉, 丁凯, 等. 低空自主无人机数字孪生系统设计[J]. 现代电子技术, 2024, 47(13): 123-128.

    ZOU Z H, ZHENG E H, DING K, et al. Design of low-altitude autonomous UAV digital twin system[J]. Modern Electronics Technique, 2024, 47(13): 123-128. (in Chinese)
    [19] 景会成, 曹育铭, 葛超, 等. 基于混合策略改进蜣螂优化算法的无人机三维路径规划[J]. 现代电子技术, 2024, 47 (13): 144-152.

    JING H C, CAO Y M, GE C, et al. UAV three-dimensional path planning based on hybrid strategy improved dung beetle optimization algorithm[J]. Modern Electronics Technique, 2024, 47(13): 144-152. (in Chinese)
    [20] 王海群, 宋国章, 葛超. 基于改进蜣螂算法的无人机三维路径规划[J]. 电光与控制, 2024, 31(11): 55-61, 82.

    WANG H Q, SONG G Z, GE C. UAV three-dimensional path planning based on improved dung beetle algorithm[J]. Electronics Optics & Control, 2024, 31(11): 55-61, 82. (in Chinese)
    [21] PENG Q, FU X, LIN F, et al. Multi-scale convolutional neural networks optimized by elite strategy dung beetle optimization algorithm for encrypted traffic classification[J]. Expert Systems With Applications, 2024, 264(10): 125729.
    [22] XIONG M, ZHENG S, LIU W, et al. A rate of penetration (ROP)prediction method based on improved dung beetle optimization algorithm and BiLSTM-SA[J]. Scientific Reports, 2024, 14(1): 25856. doi: 10.1038/s41598-024-75703-8
    [23] 栾孝驰, 汤捷中, 沙云东. 基于蜣螂算法优化深度极限学习机的中介轴承故障诊断方法[J]. 振动与冲击, 2024, 43 (21): 96-106, 127.

    LUAN X C, TANG J Z, SHA Y D. Fault diagnosis method of intermediate bearing based on dung beetle algorithm optimized deep extreme learning machine[J]. Journal of Vibration and Shock, 2024, 43(21): 96-106, 127. (in Chinese)
    [24] 吴亚中, 陈璐, 马强, 等. 多策略增强的蜣螂优化算法及其工程应用[J]. 华中科技大学学报(自然科学版), 2025, 53 (2): 95-103.

    WU Y Z, CHEN L, MA Q, et al. Multi-strategy enhanced dung beetle optimization algorithm and its engineering application[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2025, 53(2): 95-103. (in Chinese)
    [25] 胡丹, 崔喻婷, 周海河, 等. 改进蜣螂算法优化工艺参数[J/OL]. 上海交通大学学报, (2024-8-13)[2024-12-12]. https://doi.org/10.16183/j.cnki.jsjtu.2024.077.

    HU D, CUI Y T, ZHOU H H, et al. Improved dung beetle algorithm for optimizing process parameters[J/OL]. Journal of Shanghai Jiao Tong University, (2024-8-13)[2024-12-12]. https://doi.org/10.16183/j.cnki.jsjtu.2024.077.(in Chinese)
    [26] ZHANG P, XU C, HU C, et al. Coordinate transformations in satellite navigation systems[C]. Advances in Electronic Engineering, Communication and Management, Berlin, Germany: Springer, 2012.
    [27] 张笑妍, 钱程, 梁小溪, 等. 山地环境下无人机自主最优轨迹规划方法[J]. 无人系统技术, 2024, 7(5): 24-32.

    ZHANG X Y, QIAN C, LIANG X X, et al. Autonomous optimal trajectory planning method for UAVs in mountainous environments[J]. Unmanned Systems Technology, 2024, 7 (5): 24-32. (in Chinese)
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-17

目录

    /

    返回文章
    返回