Autonomous Navigation Method for Ships in Tidal River Sections Under Special Rule Constraints
-
摘要: 为解决感潮河段特殊航行规则约束下的船舶自主航行问题,以南通段水域为例,对态势感知、规则融入和操纵决策开展研究。基于环境特征与决策需求,在传统数字化交通环境模型的基础上考虑航道因素与潮汐情况,创新性构建感潮河段数字化交通环境模型并以真实数据驱动,将其转化为决策程序可识别的信息库,系统读取信息库信息,感知附近环境构成要素的状态和发展态势,为决策与控制提供输入信息。量化解析《内河避碰规则》和良好船艺要求,结合感潮河段航道走向和舷角比对方法,改进传统会遇局面辨识模型,创新性建立感潮河段会遇局面与避让责任辨识模型,明确涨潮、非涨潮期间船舶避让责任与行动时机,并建立约束方程。在环境、避让责任、操纵性等多因素约束下,提出1种能自适应潮汐影响、求取避碰方案的自主航行方法,在真实数据驱动的通航环境中进行了2组仿真实验和1组对比实验。实验结果表明:在不同潮汐情况下,本文方法均能准确识别会遇局面,判断避让责任,生成、执行能让清所有目标的改向改速方案。对比实验中,内河宽水域航行决策方法下,本船在t = 1 s时右转5°避让目标船,避让责任判定错误,行动时机和幅度不符合特殊规则和良好船艺要求;本文方法下,可感知潮汐情况和本船航行状态,在t = 201 s时右转15°安全通过,符合要求。Abstract: To address the issue of autonomous ship navigation under the constraints of special navigation rules in tidal river sections, a case study is conducted using the Nantong section waters, focusing on situation awareness, rule integration, and maneuvering decisions. Based on environmental characteristics and decision-making requirements, an innovative digital traffic environment model for tidal river sections is developed by incorporating channel factors and tidal conditions into the traditional digital traffic environment model. Driven by real data, this model is transformed into an information database recognizable by decision-making programs. The system reads the database to perceive the real-time status and development trends of environmental elements near the own ship, providing input for critical processes such as decision-making and control. The"Inland Waterway Collision Avoidance Rules" and good seamanship requirements are quantitatively analyzed. By integrating the channel direction and angle-on-the-bow comparison in tidal river sections, an improved model for identifying encounter situations based on angle-on-the-bow comparison is developed. An innovative model for identifying encounter situations and collision avoidance responsibilities in tidal river sections is established, clarifying the responsibilities and timing of actions during flood and non-flood tides, and converting these into computable constraint equations. Under the constraints of environment, collision avoidance responsibilities, and maneuverability, a novel autonomous navigation method is proposed to adaptively account for tidal influences and derive collision avoidance solutions. Two sets of simulation experiments and a comparative experiment are conducted in a real-data-driven general aviation environment. The simulation results demonstrate that, under different tidal conditions, the proposed method can accurately identify encounter situations, determine collision avoidance responsibilities, and calculate and execute course and speed change plans to avoid all targets. In the comparative experiment, under the inland wide waterway navigation decision-making method, the own ship alters course 5° to starboard at t = 1 s to avoid the target ship, resulting in incorrect collision avoidance responsibility judgment, with action timing and magnitude not complying with special rules and good seamanship requirements. In contrast, the proposed method, which accounts for tidal conditions and the own ship's navigation state, alters course 15° to starboard at t = 201 s, ensuring safe passage in compliance with requirements.
-
表 1 “Interlink Equality”轮车钟转速表
Table 1. The telegraph of "Interlink Equality"
档位 转速/(r/min) 航速/(n mile/h) 前进四 90 13.5 前进三 83 12.5 前进二 75 10.5 前进一 55 8 微速前进 34 4.5 停车 0 0 表 2 感潮河段会遇局面与避让责任辨识模型
Table 2. Inland waterway encounter situation and avoidance responsibility recognition model
会遇局面 避让责任 条件 追越 让路船 $\left(\left|\alpha_1-\theta_1\right| \leqslant 6^{\circ} \cap\left|\alpha_2-\theta_2\right| \leqslant 6^{\circ}\right) \cap\left[Q 1 \in\left(112.5^{\circ}, 247.5^{\circ}\right) \cap V_1>V_2\right]$ 被让路船 $\left(\left|\alpha_1-\theta_1\right| \leqslant 6^{\circ} \cap\left|\alpha_2-\theta_2\right| \leqslant 6^{\circ}\right) \cap\left[Q \in\left(112.5^{\circ}, 247.5^{\circ}\right) \cap V_1 <V_2\right]$ 对驶相遇 让路船 $Q 1 \in\left[0^{\circ}, 90^{\circ}\right] \cup\left[270^{\circ}, 360^{\circ}\right), Q \in\left[0^{\circ}, 90^{\circ}\right] \cup\left[270^{\circ}, 360^{\circ}\right), \left(\left|\alpha_1-\theta_1\right| \leqslant 6^{\circ} \cap\left|\alpha_2-\theta_2\right| \leqslant 6^{\circ}\right)$, 上行船/逆流船 被让路船 $Q 1 \in\left[0^{\circ}, 90^{\circ}\right] \cup\left[270^{\circ}, 360^{\circ}\right), Q \in\left[0^{\circ}, 90^{\circ}\right] \cup\left[270^{\circ}, 360^{\circ}\right), \left(\left|\alpha_1-\theta_1\right| \leqslant 6^{\circ} \cap\left|\alpha_2-\theta_2\right| \leqslant 6^{\circ}\right)$, 下行船/顺流船 横越 让路船 $84^{\circ} \leqslant\left|\alpha_1-\theta_1\right| \leqslant 96^{\circ} \cap\left|\alpha_2-\theta_2\right| \leqslant 6^{\circ} \text { 或 } 264^{\circ} \leqslant\left|\alpha_1-\theta_1\right| \leqslant 276^{\circ} \cap\left|\alpha_2-\theta_2\right| \leqslant 6^{\circ}$ 被让路船 $\left|\alpha_1-\theta_1\right| \leqslant 6^{\circ} \cap 84^{\circ} \leqslant\left|\alpha_2-\theta_2\right| \leqslant 96^{\circ} \text { 或 }\left|\alpha_1-\theta_1\right| \leqslant 6^{\circ} \cap 264^{\circ} \leqslant\left|\alpha_2-\theta_2\right| \leqslant 276^{\circ}$ 交叉相遇 让路船 不构成追越、对驶相遇和横越局面;同流向,Q ∈ (0°, 112.5°),不同流向,上行船/逆流船 被让路船 不构成追越、对驶相遇和横越局面;同流向,Q1 ∈ (0°, 112.5°),不同流向,下行船/顺流船 表 3 碰撞危险度与会遇阶段对应关系
Table 3. Correspondence between CRI and encounter stage
会遇阶段 碰撞危险度 无碰撞危险 0 碰撞危险 (0, 0.4] 紧迫局面(相互接近到单凭1艘船的行动已不能导致在安全距离上驶过) (0.4, 1) 表 4 辨识分析结果
Table 4. Identification and analysis results
船舶 局面辨识结果 避让责任 本船避让原则 涨潮时 非涨潮时 涨潮时 非涨潮时 目标船1 不同向右交叉 目标船1为让路船 本船为让路船 w < 0.4保向保速;w≥0.4右转 w≥0右转 目标船2 横越 目标船2为让路船 目标船2为让路船 w < 0.4保向保速;w≥0.4右转 w < 0.4保向保速;w≥0.4右转 目标船3 同向右交叉 本船为让路船 本船为让路船 w>0右转 w>0右转 目标船4 追越 目标船4为让路船 目标船4为让路船 w < 0.4保向保速;w≥0.4背着追越船转向 w < 0.4保向保速;w≥0.4背着追越船转向 目标船5 追越 本船为让路船 本船为让路船 w>0右转 w>0右转 目标船6 对驶相遇 目标船6为让路船 本船为让路船 w < 0.4保向保速;w≥0.4右转,左舷会船 w>0右转,以左舷会船 目标船7 同向左交叉 目标船7为让路船 目标船7为让路船 w < 0.4保向保速;w≥0.4右转 w < 0.4保向保速;w≥0.4右转 目标船8 不同向左交叉 目标船8为让路船 本船为让路船 w < 0.4保向保速;w≥0.4右转 w>0右转 表 5 “Interlink Equality”轮船舶参数
Table 5. The parameters of "Interlink Equality"
参数名称 数据 船长/m 180 船宽/m 32 吃水/m 10.5 排水量/t 49 000 螺旋桨直径/m 6.2 螺距/m 4.673 表 6 本船初始运动状态表
Table 6. The initial motion state of ownship
初始状态 初始状态 经度(°) E 120.883 1 纬度(°) N 31.908 7 初始航向(°) 338.4 初始档位 前进三 表 7 目标船4、5初始参数
Table 7. The initial parameters of target ships 4 and 5
船舶 经度/(°) 纬度/(°) 航向/(°) 航速/ (n mile/h) 目标船4 E 120.8779 N 31.9197 337.1 4.2 目标船5 E 120.8799 N 31.9414 250.3 3.9 表 8 目标船6、7初始参数
Table 8. The initial parameters of target ships 6 and 7
船舶 经度(°) 纬度(°) 航向(°) 航速(n mile/h) 目标船6 E 120.8881 N 31.9364 198.0 10.0 目标船7 E 120.8675 N 31.9412 156.0 8.1 表 9 对比实验结果分析
Table 9. The analysis of comparative experiment results
方法 潮汐情况 本船航行状态 局面辨识结果 避让责任 行动时机 操纵方案 规则符合性 目标船6 目标船7 本文方法 涨潮 顺流 不同向右交叉 对驶相遇 被让路船 w ≥ 0.4 右转15° 符合 对比方法 / / 交叉 对驶相遇 让路船 w > 0 右转5° 不符合 -
[1] 刘欧, 宋国宾, 袁小亮, 等. 考虑船间效应和操纵性能的内河船舶追越风险模型及应用[J]. 中国航海, 2024, 47(1): 1-8, 17.LIU O, SONG G B, YUAN X L, et al. Risk modeling and application of vessel overtaking consideringship-ship interaction and maneuver-ability in inland waterways[J]. Navigation of China, 2024, 47(1): 1-8, 17. (in Chinese) [2] 郑霞忠, 柯善钢, 陈星, 等. 基于复杂网络的内河船舶碰撞事故致因分析[J]. 中国安全生产科学技术, 2023, 19(2): 211-217.ZHENG X Z, KE S G, CHEN X, et al. Cause analysis of inland river ship collision accident based on complex network[J]. Journal of Safety Science and Technology, 2023, 19 (2): 211-217. (in Chinese) [3] 汪洋, 陈涛, 陈志强, 等. 内河船舶机会性互联的复杂网络模型及其时变特性[J]. 交通信息与安全, 2024, 42(2): 25-35.WANG Y, CHEN T, CHEN Z Q, et al. Complex network modeling and the ephemeral characteristics of dynamic opportunistic interconnections among vessels in inland waterway[J]. Journal of Transport Information and Safety, 2024, 42 (2): 25-35. (in Chinese) [4] LI Q, YANG B D, HONG B G. Calculation and measurement of tide height for the navigation of ship at high tide using artificial neural network[J]. Polish Maritime Research, 2018, 25 (s3): 99-110. doi: 10.2478/pomr-2018-0118 [5] SALIM A M, DWARAKISH G S, LIJU K V, et al. Weekly prediction of tides using neural networks[J]. Procedia Engineering, 2015, 116: 678-682. doi: 10.1016/j.proeng.2015.08.351 [6] DI M Y, ZHANG A M, GUO B F, et al. Evaluation of real-time PPP-based tide measurement using IGS real-time service[J]. sensors, 2020, 20(10): 2968. doi: 10.3390/s20102968 [7] JIANG F, DENG X T, ZHANG Z S, et al. Seabed terrain matching algorithm basing on correction factor of tide and probability data associate filtering[C]. 2009 ISECS International Colloquium on Computing, Communication, Control, and Management, Sanya, China: IEEE, 2009. [8] 赵燕, 苑茹滨, 刘帅, 等. 基于航行经验的智能船舶自主避碰算法研究[J]. 天津航海, 2023(2): 68-74.ZHAO Y, YUAN R B, LIU S, et al. The algorithm research on the autonomous collision prevention with intelligence ship based on navigational experience[J]. TIANJIN HANG-HAI, 2023(2): 68-74. (in Chinese) [9] JOHANSEN T A, PEREZ T, CRISTOFARO A. Ship collision avoidance and COLREGS compliance using simulation-based control behavior selection with predictive hazard assessment[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3407-3422. doi: 10.1109/TITS.2016.2551780 [10] 隋丽蓉, 高曙, 何伟. 基于多智能体深度强化学习的船舶协同避碰策略[J]. 控制与决策, 2023, 38(05): 1395-1402.SUI L R, GAO S, HE W. Ship cooperative collision avoidance strategy based on multi-agent deep reinforcement learning[J]. Control and Decision, 2023, 38(5): 1395-1402. (in Chinese) [11] ZHAO X Y, HE Y X, HUANG L W, et al. Intelligent collision avoidance method for ships based on COLRGEs and improved velocity obstacle algorithm[J]. Applied Sciences, 2022, 12(18): 8926. doi: 10.3390/app12188926 [12] HE Y X, JIN Y, HUANG L W, et al. Quantitative analysis of COLREG rules and seamanship for autonomous collision avoidance at open sea[J]. Ocean Engineering, 2017, 140: 281-291. doi: 10.1016/j.oceaneng.2017.05.029 [13] 车琪, 徐海祥, 冯辉, 等. 考虑会遇态势辨识不确定性的多船避碰方法[J]. 武汉理工大学学报(交通科学与工程版), 2025, 49(1): 66-73.CHE Q, XU H Y, FENG H, et al. Multi-ship collision avoidance method considering the uncertainty of situation identification[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2025, 49(1): 66-73. (in Chinese) [14] 关巍, 罗文哲, 崔哲闻. 基于深度强化学习的无人驾驶船舶避碰行为决策[J]. 大连海事大学学报, 2024, 50(1): 11-19.GUAN W, LUO W Z, CUI Z W. Collision avoidance behavior decision-making of unmanned ship based on deep reinforcement learning[J]. Journal of Dalian Maritime University, 2024, 50(1): 11-19. (in Chinese) [15] 马勇, 王雯琦, 严新平. 面向新一代航运系统的船舶智能航行技术研究进展[J]. 中国科学: 技术科学, 2023, 53(11): 1795-1806.MA Y, WANG W Q, YAN X P. Research progress of vessel intelligent navigation technology for the new generation of waterborne transportation system[J]. Scientia Sinica(Technologica), 2023, 53(11): 1795-1806. (in Chinese) [16] 贺益雄, 代永刚, 赵兴亚, 等. 河口深槽可航宽度变化水域航行决策方法[J]. 上海交通大学学报, 2025, 59(4): 489-502.HE Y X, DAI Y G, ZHAO X Y, et al. Navigation decision method in estuary deep trough width of navigable waters[J]. Journal of Shanghai Jiaotong University, 2025, 59(4): 489-502. (in Chinese) [17] 王川隘, 童思陈, 蒋聘凤, 等. 风流效应下船舶操纵运动数值模拟[J]. 大连海事大学学报, 2020, 46(3): 50-59.WANG C A, TONG S C, JIANG P F, et al. Numerical simulation of ship maneuvering motion under wind and current effects[J]. Journal of Dalian Maritime University, 2020, 46 (3): 50-59. (in Chinese) [18] YU D Q, HE Y X, ZHAO X Y., et al. Dynamic adaptive autonomous navigation decision-making method in traffic separation scheme waters: A case study for Chengshanjiao waters[J]. Ocean Engineering, 2023, 285: 115448. doi: 10.1016/j.oceaneng.2023.115448 [19] XIA Y, ZHENG S T, YANG Y, et al. Ship maneuvering performance prediction based on MMG model[J]. IOP Conference Series: Materials Science and Engineering, 2018, 452 (4): 42-46. [20] 黄立文, 刘进来, 贺益雄, 等. 狭窄弯曲航段自动航迹控制方法研究[J]. 武汉理工大学学报, 2023, 45(4): 53-62.HUANG L W, LIU J L, HE Y X, et al. Study on automatic track control in narrow curved section[J]. Journal of Wuhan University of Technology, 2023, 45(4): 53-62. (in Chinese) [21] WANG B, HE Y X, HU W X, et al. A decision-making method for autonomous collision avoidance for the stand-on vessel based on motion process and COLREGs. Journal of Marine Science and Engineering. 2021; 9(6): 584. [22] WANG Y, ZHANG J F, CHEN X Q, et al. A spatial-temporal forensic analysis for inland-water ship collisions using AIS data[J]. Safety Science, 2013, 57(10): 187-202. [23] 黄立文, 徐录平, 陈家豪, 等. 分道通航制内河宽水域航行决策方法研究[J]. 华中科技大学学报(自然科学版), 2024, 52(12): 94-102.HUANG L W, XU L P, CHEN J H, et al. Decision-making method for wide-water navigation in inland rivers under traffic separation system[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2024, 52 (12): 94-102. (in Chinese) -
下载: