Low-altitude UAV Positioning Fusing Pyramid Grid and Direction-finding Cross-location
-
摘要: 针对传统地面测向设备在低空空域监视中无法获取航空器高度数据的问题,研究了融合高斯金字塔空域栅格模型与地面测向设备的低成本算法,实现低空无人机三维位置(含高度)实时精准预测。利用立方米级最优粒度三维栅格技术,将可通达空域离散化为可计算空域,奠定计算基础;在高斯滤波下采样中引入湍流强度动态关联的三维高斯核函数,创新性地构建高斯金字塔多尺度空域模型,利用三线性插值上采样保障数据连续性与精度;将实时天气、地理信息及环境因素映射至空域栅格,设计基于环境参数方差的动态权重函数,建立动态加权的可信度矩阵。在金字塔栅格空间中,结合测向交叉定位数据,遍历空域栅格概率集合,计算无人机经纬度及高度,实现三维定位。在某测试区域内部署2台测向设备进行实验验证。结果表明:①定位精度:在最小分辨率8 m的三维栅格下,经纬度定位最大偏差为20 m(目标转向时),高度预测平均偏差为4.37 m(标准差7.87),显著优于对比方法;②计算效率:算法平均内存占用仅55 MB,在i9-13900H处理器下CPU平均利用率仅为9%,显著低于对比方法;③适用性:仅需低成本地面测向设备支持,无需机载设备。本文算法在立方米级偏差范围内实现了低成本、较高精度的低空无人机三维实时定位,可为低空监视设施建设受限场景提供有效解决方案。Abstract: To address the issue that traditional ground-based direction-finding equipment cannot acquire aircraft altitude data during low-altitude airspace surveillance, this study investigates a low-cost algorithm integrating Gaussian pyramid airspace grid models with ground-based direction-finding equipment, enabling real-time and precise 3D position (including altitude) prediction for low-altitude UAVs. The accessible airspace is discretized into a computable airspace using cubic-meter-level optimal granularity 3D grid technology, laying the computational foundation. During Gaussian filtering downsampling, a 3D Gaussian kernel function dynamically correlated with turbulence intensity is introduced, innovatively con-structing a multi-scale Gaussian pyramid airspace model. Trilinear interpolation upsampling ensures data continuity and precision. Real-time weather conditions, geographic information, and environmental factors are mapped to the airspace grid, establishing a dynamically weighted credibility matrix via a dynamic weighting function based on the variance of environmental parameters. Within the pyramid grid space, combined with direction-finding cross-location data, the algorithm traverses the airspace grid probability set to calculate latitude/longitude and altitude of the UAV, achieving 3D localization. Experimental validation is conducted by deploying two detection devices in a test area. The results demonstrate that: ① Positioning Ac-curacy: In a 3D grid with a minimum resolution of 8 m, the maximum latitude/longitude deviation is 20 m (during target turning), and the average altitude prediction deviation is 4.37 m (standard deviation: 7.87), significantly outperforming comparative methods. ② Computational Efficiency: The algorithm averages only 55 MB memory usage and 9% CPU utilization on an i9-13900H processor, markedly lower than comparative methods. ③ Applicability: It requires only low-cost ground-based direction-finding equipment without onboard devices. The proposed algorithm achieves low-cost, high-precision 3D real-time localization for low-altitude UAVs within cubic-meter-level deviations, providing an effective solution for scenarios with constrained low-altitude surveillance infrastructure deployment.
-
表 1 1号测向设备和2号测向设备主要参数
Table 1. Main parameters of No. 1 and No. 2 direction-finding equipment
参数 1号测向设备 2号测向设备 扫描频段/G 2.4,5.8 2.4,5.8 侦测距离/km ≥2 ≥2 接收灵敏度/dBm ≥-110 ≥-110 扫描范围(/ °) 360 360 角度误差(/ °) ≤2 ≤2 纬度(°) 32.086 836 32.081 165 经度(/ °) 118.764 62 118.872 475 高度/m 65 52 表 2 天气状况对传感器可信度影响表
Table 2. Weather factor impact table
天气 无线电类 红外类 可见光类 晴天 1.0 1.0 1.0 多云 1.0 1.0 1.0 阴天 1.0 1.0 0.6 大雨、暴雨 0.8 0.3 0.2 中雨 0.9 0.5 0.4 小雨 0.95 0.7 0.6 大雪 0.8 0.4 0.2 中雪 0.85 0.6 0.3 小雪 0.9 0.8 0.4 大雾 0.8 0.2 0.1 雾 0.95 0.5 0.3 表 3 温度因素对传感器可信度影响表
Table 3. Temperature factor impact table
温度(/℃) 无线电类 红外类 可见光类 ≤-20 0.9 1.0 0.9 > -20—10 1.0 1.0 1.0 > -10~0 1.0 1.0 1.0 > 0-10 1.0 1.0 1.0 > 10 - 20 1.0 1.0 1.0 > 20 - 30 1.0 0.8 1.0 > 30 - 40 1.0 0.7 1.0 > 40 0.9 0.6 0.9 表 4 湿度因素对传感器可信度影响表
Table 4. Humidity factor impact table
湿度(/ %) 无线电类 红外类 可见光类 ≤10 1.0 1.0 0.9 > 10~20 1.0 1.0 1.0 > 20~30 1.0 1.0 1.0 > 30~40 1.0 1.0 1.0 > 40~50 1.0 1.0 1.0 > 50~60 1.0 0.9 0.95 > 60~70 1.0 0.85 0.9 > 70~80 0.95 0.8 0.85 > 80 0.9 0.7 0.8 表 5 本文算法与前沿方法性能对比
Table 5. Metrics comparison: proposed algorithm vs. State-of-the-art methods
对比方法 高度平均偏差/m 平面定位误差/m 计算资源占用/MB 设备成本 内存/MB CPU/% 本文算法 4.37 ≤20(转向时) 55 9 低(纯地面设备) 徐海源融合TDOA/DOA 5.2 12 82 15 高(需机载应答器) Pang随机分形搜索 6.8* 18 210 25 高(离线算力需求) 徐鹏豪测向交叉定位 未提供 15 48 12 低 *注:Pang原文未提高度偏差,6.8 m为根据其航迹优化误差推算值。 -
[1] 管祥民, 许东松. 低空飞行服务保障体系建设新内涵及人才培训体系构建思考[J]. 民航管理, 2024(6): 19-23.GUAN X M, XU D S. Thoughts on the new connotation of the construction of low-altitude flight service support system and the establishment of talent training system[J]. Civil Aviation Management, 2024(6): 19-23. (in Chinese) [2] 韩宝亮. 中国民用低空空域发展的现状、问题及对策[J]. 国际航空航天科学, 2020, 8(4): 61-69.HANG B L. The current status, problems and countermeasures of low altitude airspace development in chinese civil aviation industry[J]. Journal of Aerospace Science and Technology[J], 2020, 8(4): 61-69. (in Chinese) [3] LABIB N S, DANOY G, MUSIAL J, et al. Internet of unmanned aerial vehicles-A multilayer low-altitude airspace model for distributed UAV traffic management[J]. SENSORS, 2019, 19(21): 4779. doi: 10.3390/s19214779 [4] 谢华, 尹嘉男, 朱永文, 等. 数字低空空域栅格化的表征度量与最优标定[J]. 数据采集与处理, 2024, 39(1): 31-43.XIE H, YIN J N, ZHU Y W, et al. Characterization, calculation and optimal calibration for rasterization in digital low-altitude airspace system[J]. Journal of Data Acquisition and Processing, 2024, 39(1): 31-43. (in Chinese) [5] 王艳军, 水笑雨, 王梦尹. 机场航班时刻资源管理研究进展[J]. 北京航空航天大学学报, 2024, 50(4): 1065-1076.WANG Y J, SHUI X Y, WANG M Y. Research progress on airport slot allocation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(4): 1065-1076. (in Chinese) [6] PONGSAKORNSATHIEN N, BIJJAHALLI S, GARDI A, et al. A performance-based airspace model for unmanned aircraft systems traffic management[J]. Aerospace, 2020, 7 (11): 154-154. doi: 10.3390/aerospace7110154 [7] PANG B Z, LOWK H, LYU C. Adaptive conflict resolution for multi-UAV 4D routes optimization using stochastic fractal search algorithm[J]. Transportation Research Part C: Emerging Technologies, 2022, 139: 103666. doi: 10.1016/j.trc.2022.103666 [8] 陈志杰, 朱永文, 刘杨. 基于数字化空域系统的城市无人机管理对策研究[J]. 中国民航大学学报, 2023, 41(3): 8-12, 64.CHEN Z J, ZHU Y W, LIU Y. Management strategy of the urban UAV based on digital airspace system[J]. Journal of Civil Aviation University of China, 2023, 41(3): 8-12, 64. (in Chinese) [9] LI X Y, ZHANG X J, TAN Y H, et al. Optimization of digital multi-beamforming for space-based ADS-B using distributed cooperative coevolution with an adaptive grouping strategy[J]. Chinese Journal of Aeronautics, 2023, 36(10): 391-408. doi: 10.1016/j.cja.2023.03.008 [10] 余莎莎, 陈艺君, 张学军. 城市低空场景下无人机运行对地风险量化评估[J]. 北京航空航天大学学报, 2025, 51(3): 806-815.YU S S, CHEN Y J, ZHANG X J, et al. Ground risk quantitative assessment for UAV operations in urban low-altitude scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(3): 806-815. (in Chinese) [11] 谢华, 苏方正, 尹嘉男, 等. 复杂低空无人机飞行冲突网络建模与精细管理[J]. 航空学报, 2023, 44(18): 216-236.XIE H, SU F Z, YIN J N, et al. Network modeling and refined management of UAV flight conflicts in complex low altitude airspace[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 216-236. (in Chinese) [12] VLADIMIR K, VLADIMIR O, IGOR K, et al. Use of acoustic signature for detection, recognition and direction finding of small unmanned aerial vehicles[C]. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine: IEEE, 2020. [13] 徐朋豪, 丁洪兵, 李成, 等. 远场环境下基于方向角的测向交叉定位技术研究[J]. 齐鲁工业大学学报, 2024, 38(2): 16-23.XU M H, DING H B, LI C, et al. A study on the lateral cross localization using direction angle in far-field environment[J]. Journal of Qilu University of Technology, 2024, 38(2): 16-23. [14] 徐海源, 苏成晓, 汪华兴. 1种融合时差频差和测向的运动目标跟踪方法[J]. 电讯技术, 2024, 64(2): 261-265.XU H Y, SU C X, WANG H X. A moving target tracking method based on fusion of TDOA/ FDOA/DOA[J]. Telecommunication Engineering, 2024, 64(2): 261-265. (in Chinese) [15] 朱永文, 谢华, 王长春. 空域数值计算与优化方法[M]. 北京: 科学出版社, 2020.ZHU Y W, XIE H, WANG C C. Numerical computation and optimization methods in airspace[M]. Beijing: Science Press, 2020. (in Chinese) [16] 赵江, 孟晨阳, 王晓博, 等. 特征点提取下的AGV栅格法建模与分析[J]. 计算机工程与应用, 2022, 58(8): 156-167.ZHAO J, MENG C Y, WANG X B, et al. Modeling and analysis of AGV grid method based on feature points extraction[J]. Computer Engineering and Applications, 2022, 58 (8): 156-167. (in Chinese) [17] 程果, 陈荦, 吴秋云, 等. 1种面向复杂地理空间栅格数据处理算法并行化的任务调度方法[J]. 国防科技大学学报, 2012, 34(6): 61-65.CHEN G, CHEN L, WU Q Y, et al. A task scheduling method for parallelization of complicated geospatial raster data processing algorithms[J]. Journal of National University of Defense Technology, 2012, 34(6): 61-65. (in Chinese) [18] 潘卫军, 罗昊天, 罗玉明, 等. 不同侧风类型影响下的飞机尾涡数值模拟研究[J]. 科学技术与工程, 2023, 23(4): 1747-1759.PAN W J, LUO H T, LUO Y M. Numerical simulation of aircraft wake vortex under the influence of different crosswind Types[J]. Science Technology and Engineering, 2023, 23 (4): 1747-1759. (in Chinese) [19] 陈英, 董思羽. 基于可信度小波神经网络的多传感器数据融合方法[J]. 吉林大学学报(理学版), 2020, 58(4): 953-959.CHEN Y, DONG S Y. Fusion method based on credible wavelet neural network for multi-sensor data[J]. Journal of Jilin University(Science Edition), 2020, 58(4): 953-959. (in Chinese) [20] 张健, 赵嶷飞, 卢飞, 等. 城市物流无人机平行航线横向间隔研究[J]. 交通信息与安全, 2024, 42(4): 118-124. doi: 10.3963/j.jssn.1674-4861.2024.04.013ZHANG J, ZHAO N F, LU F, et al. Study on parallel routes lateral separation for urban logistics UAV[J]. Journal of Transport Information and Safety, 2024, 42(4): 118-124. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.04.013 -