留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空域结构自适应拓扑的固定翼VTOL飞行器低空航迹规划方法

杨剑挺 黄群邦 刘擎旗 李世林 赛颖

杨剑挺, 黄群邦, 刘擎旗, 李世林, 赛颖. 基于空域结构自适应拓扑的固定翼VTOL飞行器低空航迹规划方法[J]. 交通信息与安全, 2025, 43(3): 141-153. doi: 10.3963/j.jssn.1674-4861.2025.03.013
引用本文: 杨剑挺, 黄群邦, 刘擎旗, 李世林, 赛颖. 基于空域结构自适应拓扑的固定翼VTOL飞行器低空航迹规划方法[J]. 交通信息与安全, 2025, 43(3): 141-153. doi: 10.3963/j.jssn.1674-4861.2025.03.013
YANG Jianting, HUANG Qunbang, LIU Qingqi, LI Shilin, SAI Ying. Low-altitude Trajectory Planning Method for Fixed-wing VTOL Aircraft Based on Adaptive Airspace Structure Topology[J]. Journal of Transport Information and Safety, 2025, 43(3): 141-153. doi: 10.3963/j.jssn.1674-4861.2025.03.013
Citation: YANG Jianting, HUANG Qunbang, LIU Qingqi, LI Shilin, SAI Ying. Low-altitude Trajectory Planning Method for Fixed-wing VTOL Aircraft Based on Adaptive Airspace Structure Topology[J]. Journal of Transport Information and Safety, 2025, 43(3): 141-153. doi: 10.3963/j.jssn.1674-4861.2025.03.013

基于空域结构自适应拓扑的固定翼VTOL飞行器低空航迹规划方法

doi: 10.3963/j.jssn.1674-4861.2025.03.013
基金项目: 

国家自然科学基金项目 62362044

云南省兴滇人才青年人才项目及其后续支持项目 YNQR-QNRC-2019-047

详细信息
    作者简介:

    杨剑挺(1990—),博士,副教授. 研究方向:低速VTOL飞行器低空综合立体交通. E-mail:yjt779@mail.ustc.edu.cn

    通讯作者:

    杨剑挺(1990—),博士,副教授. 研究方向:低速VTOL飞行器低空综合立体交通. E-mail:yjt779@mail.ustc.edu.cn

  • 中图分类号: V2-9

Low-altitude Trajectory Planning Method for Fixed-wing VTOL Aircraft Based on Adaptive Airspace Structure Topology

  • 摘要: 在当前空中交通管理体系中,基于均匀栅格的飞行器航迹规划方法广泛应用,但存在局限性。空域的均匀栅格划分无法自适应匹配空域的障碍物变尺度分布,导致特定空域航迹规划效率较低、计算代价较大,且在动态变化的空域环境中,航迹动态调整效率难以满足实际需求。针对以上问题,研究空域网格尺度自适应拓扑算法,根据障碍物分布特点实现空域的自适应Delaunay三角划分,并能够实现空域结构随着障碍物的动态调整快速高效局部重构;进一步基于空域结构自适应拓扑构建航迹搜索网络,采用A*算法在搜索网络上搜索初始航迹,针对初始航迹较长,折角尖锐的问题,设计了1种航迹实效化算法,通过局部检测优化航迹,使其转弯处圆弧过渡,不符合要求的圆弧,通过调整安全边界半径进行优化,以契合固定翼垂直起降飞行器(vertical take-off and landing,VTOL)飞行器运行特性。具体算例仿真结果表明空域网格尺度自适应拓扑算法能够使空域栅格数量减少69.33%,显著压缩搜索空间;航迹实效化算法能够使航迹长度缩短8%~15%,且航迹的光滑度显著提升,有效降低飞行控制难度与能耗。综上所述,本文的研究为固定翼VTOL飞行器的低空航迹规划提供了1种高效、实用的解决方案。

     

  • 图  1  空域的栅格化表示

    Figure  1.  Grid representation of airspace

    图  2  初始障碍物聚类结果

    Figure  2.  Initial clustering results of obstacles

    图  3  初始空域拓扑

    Figure  3.  Initial airspace topology

    图  4  初始障碍物组安全边界

    Figure  4.  Initial obstacle group safety boundary

    图  5  最终的障碍物组安全边界

    Figure  5.  Final safety boundary of the obstacle group

    图  6  最终的空域拓扑

    Figure  6.  Final airspace topology

    图  7  空域自适应网格拓扑流程

    Figure  7.  The process of airspace adaptive mesh topology

    图  8  生成名义航迹网

    Figure  8.  Generate nominal flight track network

    图  9  名义航迹网

    Figure  9.  Nominal flight track network

    图  10  名义航迹

    Figure  10.  Nominal flight track

    图  11  实效化航迹与名义航迹对比

    Figure  11.  Comparison between actualized track and nominal track

    图  12  转弯半径调整示意

    Figure  12.  Turning radius adjustment diagram

    图  13  航迹自适应规划流程

    Figure  13.  Trajectory adaptive planning process

    图  14  空域处理前后的航迹

    Figure  14.  Tracks before and after airspace processing

    图  15  障碍物未变化前的空域及航迹

    Figure  15.  The airspace and flight path before the obstacle changed

    图  16  障碍物出现后的空域及航迹调整

    Figure  16.  The adjustment of airspace and flight path after the appearance of obstacles

    图  17  障碍物消失后的空域及航迹调整

    Figure  17.  The adjustment of airspace and flight path after the disappearance of obstacles

    图  18  同一起止点下单条航迹规划

    Figure  18.  Single - track planning with the same starting and ending points.

    图  19  15%障碍物密度不同障碍物分布航迹网络图

    Figure  19.  Trajectory network diagrams with 15% obstacle density and different obstacle distributions.

    图  20  25%障碍物密度不同障碍物分布航迹网络图

    Figure  20.  Trajectory network diagrams with 25% obstacle density and different obstacle distributions.

    表  1  空域处理前后的航迹长度对比

    Table  1.   Comparison of track lengths before and after airspace processing

    OD对 空域未处理航迹长度 本文算法航迹长度 空域处理后航迹缩短比例($\pm 0.005 \%$)
    O1D1 42.87 38.47 10.27
    O2D2 33.14 29.93 9.70
    O3D3 32.97 28.06 14.89
    O4D4 37.80 33.33 11.81
    O5D5 32.73 29.80 8.95
    O6D6 30.14 26.87 10.85
    O7D7 30.24 27.78 8.14
    O8D8 30.73 26.86 12.59
    O9D9 31.90 29.22 8.40
    O10D10 37.46 34.50 7.90
    下载: 导出CSV
  • [1] 廖小罕, 屈文秋, 徐晨晨, 等. 城市空中交通及其新型基础设施低空公共航路研究综述[J]. 航空学报, 2023, 44(24): 6-34.

    LIAO X H, QU W Q, XU C C, et al. Overview of urban air mobility and its new infrastructure: low-altitude public air routes[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (24): 6-34. (in Chinese).
    [2] LIU Y, KREIMEIER M, STUMPF E, et al. Overview of recent endeavors on personal aerial vehicles: a focus on the US and Europe led research activities[J]. Progress in Aerospace Sciences, 2017, 91: 53-66.
    [3] BACCHINI A, CESTINO E. Electric VTOL configurations comparison[J]. Aerospace, 2019, 6(3): 26.
    [4] KASLIWAL A, FURBUSH N J, GAWRON J H, et al. Role of flying cars in sustainable mobility[J]. Nature communications, 2019, 10(1): 1555.
    [5] ZHOU Y, ZHAO H, LIU Y. An evaluative review of the VTOL technologies for unmanned and manned aerial vehicles[J]. Computer Communications, 2020, 149(1): 356-369.
    [6] BAURANOV A, RAKAS J. Designing airspace for urban air mobility: a review of concepts and approaches[J]. Progress in Aerospace Sciences, 2021, 125(1): 100726.
    [7] 张洪海, 李姗, 夷珈, 等. 城市低空航路规划研究综述[J]. 南京航空航天大学学报, 2021, 53(6): 827-838.

    ZHANG H H, LI S, YI J, et al. A comprehensive review of urban low-altitude air route planning research[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2021, 53(6): 827-838(in Chinese).
    [8] 王俊潼, 包丹文, 周佳怡, 等. 低空空域规划研究现状与展望[J/OL]. (2024-10-29)[2025-04-20]. http://kns.cnki.net/kcms/detail/11.1929.V.20241029.1546.008.html.

    WANG J T, BAO D W, ZHOU J Y, et al. Research status and prospects of low-altitude airspace planning[J/OL]. (2024-10-29)[2025-04-20]. http://kns.cnki.net/kcms/detail/11.1929.V.20241029.1546.008.html. (in Chinese)
    [9] 李诚龙, 屈文秋, 李彦冬等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54

    LI C L, QU W Q, LI Y D, HUANG L Y, et al. Overview of traffic management of urban air mobility(UAM)with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54. (in Chinese)
    [10] 蒋薇, 李印凤. 基于熵权改进-TOPSIS法的扇区复杂度评估方法[J]. 交通信息与安全, 2023, 41(6): 142-151.

    JIANG W, LI Y F. A method forevaluating sector complexity based on the entropy weight-improved TOPSIS method[J]. Journal of Transport Information and Safety, 2023, 41(6): 142-151. (in Chinese)
    [11] 张兆宁, 张东满. 基于Delauany三角形的分时段区域管制扇区划分[J]. 科学技术与工程, 2014, 14(29): 100-105.

    ZHANG Z N, ZHANG D M. Time-period-based regional control sector division based on Delauany triangles[J]. Science Technology and Engineering, 2014, 14(29): 100-105. (in Chinese).
    [12] ZOU X, CHENG P, AN B, et al. Sectorization and configuration transition in airspace design[J]. Mathematical Problems in Engineering, 2016(1): 6048326.
    [13] BLOCHLIGER F, FEHR M, DYMCZYK M, et al. Topomap: topological mapping and navigation based on visual slam maps[C]. 2018 IEEE International Conference on Robotics and Automation(ICRA), Brisbane, QLD, Australia: IEEE, 2018.
    [14] CHO J, YOON Y. Extraction and interpretation of geometrical and topological properties of urban airspace for UAS operations[C]. 13th USA/Europe Air Traffic Management Research and Development Seminar (ATM2019), Daejeon, South Korea: KAIST, 2019.
    [15] VINCENT-BOULAY N, MARSDEN C, CUI A. Data-driven geospatial modeling for complex airspace environments[C]. Modeling and Simulation of Air and Space Vehicle Dynamics, Systems, and Environments Ⅱ, Orlando, FL: AIAA, 2024.
    [16] 陈艺君, 余莎莎, 张学军. 城市低空场景下无人机运行对地风险量化评估[J]. 北京航空航天大学学报, 2025, 51(3): 806-815.

    CHEN Y J, YU S S, ZHANG X J. Quantitative Assessment of ground-level risks from UAV operations in urban low-altitude scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(3): 806-815. (in Chinese)
    [17] WU P, XIE J, LIU Y, et al. Risk-bounded and fairness-aware path planning for urban air mobility operations under uncertainty[J]. Aerospace Science and Technology, 2022, 127: 107738.
    [18] LIU H, LI X, FAN M, et al. An autonomous path planning method for unmanned aerial vehicle based on a tangent intersection and target guidance strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23 (4): 3061-3073.
    [19] LIU Y, ZHANG X, GUAN X, et al. Adaptive sensitivity decision based path planning algorithm for unmanned aerial vehicle with improved particle swarm optimization[J]. Aerospace Science and Technology, 2016, 58: 92-102.
    [20] LAI R, WU Z, LIU X, et al. Fusion algorithm of the improved A* algorithm and segmented bezier curves for the path planning of mobile robots[J]. Sustainability, 2023, 15 (3): 2483.
    [21] LIU L, LIN J, YAO J, et al. Path planning for smart car based on Dijkstra algorithm and dynamic window approach[J]. Wireless Communications and Mobile Computing, 2021(1): 8881684.
    [22] 张洪海, 张连东, 刘皞, 等. 城市低空物流无人机航迹规划模型研究[J]. 交通运输系统工程与信息, 2022, 22(1): 256-264.

    ZHANG H H, ZHANG L D, LIU H, et al. Research on the flight path planning model for urban low-altitude logistics drones[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 256-264. (in Chinese).
    [23] ZHANG H, TIAN T, FENG O, et al. Research on public air route network planning of urban low-altitude logistics unmanned aerial aehicles[J]. Sustainability, 2023(15): 12021.
    [24] RIENECKER H, HILDEBRAND V, PFIFER H. Energy optimal 3D flight path planning for unmanned aerial vehicle in urban environments[J]. CEAS Aeronautical Journal, 2023, 14 (3): 621-636.
    [25] 余翔, 邓千锐, 段思睿, 等. 1种多无人机协同优先覆盖搜索算法[J]. 系统仿真学报, 2024, 36(4): 991-1000.

    YU X, DENG Q R, DUAN S R, et al. A multi-UAV cooperative prioritized coverage search algorithm[J]. Journal of System Simulation, 2024, 36(4): 991-1000. (in Chinese).
    [26] 赵嶷飞, 谷瑞嘉, 任新惠. 考虑城市低空风场的小型无人机路径规划方法[J/OL]. 北京航空航天大学学报, 1-15[2025-06-18]. https://doi.org/10.13700/j.bh.1001-5965.2024.0281.

    ZHAO Y F, GU R J, REN X H. Path planning method for small unmanned aerial vehicles considering the urban low-altitude wind field[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1-15[2025-06-18]. https://doi.org/10.13700/j.bh.1001-5965.2024.0281.
    [27] 艾毅, 庾映雪, 钟庆伟, 等. 面向航空器集群的多尺度保护区模型与改进速度障碍法[J]. 交通信息与安全, 2024, 42 (2): 49-58, 66.

    AI Y, YU Y X, ZHONG Q W, et al. Multi-scale protection zone model and improved velocity obstacle method for aircraft clusters[J]. Journal of Transport Information and Safety, 2024, 42(02): 49-58, 66. (in Chinese)
    [28] 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1): 6-34.

    QUAN Q, LI G, BO Y Q, et al. Low altitude UAV traffic management: an introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 6-34. (in Chinese)
    [29] 陈义友, 张建平, 邹翔, 等. 民用无人机交通管理体系架构及关键技术[J]. 科学技术与工程, 2021, 21(31): 13221-13237.

    CHEN Y Y, ZHANG J P, ZOU X, et al. System framework and key technologies of civil unmanned aircraft system traffic management[J]. Science Technology and Engineering, 2021, 21(31): 13221-13237. (in Chinese)
    [30] 黄龙杨, 张顶立, 李诚龙, 等. 无人机城市超低空运行概念(ConOps)初探[J]. 民航学报, 2022, 6(3): 50-55.

    HUANG L Y, ZHANG D L, et al. Concept of operation for UAVs in urban ultra-low-altitude airspace[J]. Journal of Civil Aviation, 2022, 6(3): 50-55. (in Chinese)
    [31] JOHNSON, WILLIAM C. UAM coordination and assessment team(UCAT)NASA UAM for ENRI technical interchange meeting[R]. Washington D. C. : NASA, 2019.
    [32] 张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 82-106.

    ZHANG H H, ZOU Y Y, ZHANG Q Q, et al. A comprehensive review of future urban air traffic management research[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (7): 82-106. (in Chinese)
    [33] 王兴隆, 苗尚飞. 空域扇区网络结构特性分析及韧性评估[J]. 北京航空航天大学学报, 2021, 47(5): 904-911.

    WANG X L MIAO S F. Analysis of network structure characteristics and resilience evaluation of airspace sectors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 904-911. (in Chinese)
    [34] 朱云峰, 王艳军, 朱陈平. 不同攻击模式下中国航路网络抗毁性研究[J]. 南京工程学院学报(自然科学版), 2018, 16 (2): 51-56.

    ZHU Y F, WANG Y J, ZHU C P. Research on the invulnerability of China's airway network under different attack modes[J]. Journal of Nanjing Institute of Technology(Natural Science Edition), 2018, 16(2): 51-56. (in Chinese)
    [35] 朱永文, 谢华, 王长春. 空域数值计算与优化方法[M]. 北京: 科学出版社, 2020.

    ZHU Y W, XIE H, WANG C C. numerical computation and optimization methods for airspace[M]. Beijing: Science Press, 2020. (in Chinese)
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-14
  • 网络出版日期:  2025-10-11

目录

    /

    返回文章
    返回