留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GNSS轨迹数据的公交多能源供需网络调度优化模型

奇格奇 曹琳琪 沈益达 董艳 何思帆 杨瑀玎 关伟

奇格奇, 曹琳琪, 沈益达, 董艳, 何思帆, 杨瑀玎, 关伟. 基于GNSS轨迹数据的公交多能源供需网络调度优化模型[J]. 交通信息与安全, 2025, 43(3): 85-99. doi: 10.3963/j.jssn.1674-4861.2025.03.009
引用本文: 奇格奇, 曹琳琪, 沈益达, 董艳, 何思帆, 杨瑀玎, 关伟. 基于GNSS轨迹数据的公交多能源供需网络调度优化模型[J]. 交通信息与安全, 2025, 43(3): 85-99. doi: 10.3963/j.jssn.1674-4861.2025.03.009
QI Geqi, CAO Linqi, SHEN Yida, DONG Yan, HE Sifan, YANG Yuding, GUAN Wei. An Optimization Model for Multi-energy Supply and Demand Network Scheduling of Public Transportation Based on GNSS Trajectory Data[J]. Journal of Transport Information and Safety, 2025, 43(3): 85-99. doi: 10.3963/j.jssn.1674-4861.2025.03.009
Citation: QI Geqi, CAO Linqi, SHEN Yida, DONG Yan, HE Sifan, YANG Yuding, GUAN Wei. An Optimization Model for Multi-energy Supply and Demand Network Scheduling of Public Transportation Based on GNSS Trajectory Data[J]. Journal of Transport Information and Safety, 2025, 43(3): 85-99. doi: 10.3963/j.jssn.1674-4861.2025.03.009

基于GNSS轨迹数据的公交多能源供需网络调度优化模型

doi: 10.3963/j.jssn.1674-4861.2025.03.009
基金项目: 

国家自然科学基金项目 72371021

详细信息
    作者简介:

    奇格奇(1987—),博士,副教授. 研究方向:智能交通系统、交通大数据. E-mail:gqqi@bjtu.edu.cn

    通讯作者:

    关伟(1968—),博士,教授. 研究方向:智能交通系统、系统工程. E-mail:weig@bjtu.edu.cn

  • 中图分类号: U491.1

An Optimization Model for Multi-energy Supply and Demand Network Scheduling of Public Transportation Based on GNSS Trajectory Data

  • 摘要: 针对多能源类型(包括油、电、气、氢等)公交车混合运营现状,在考虑公交实际运营经验与习惯的基础上,为弥补当前理论研究中通常以单一能源类型为对象的不足,研究了公交混合能源类型网络中能源补充的供需匹配优化问题。以公交车实际全球导航卫星系统(Global Navigation Satellite System,GNSS)数据为基础,挖掘公交在能源补充过程中表现出的空间特性,提出“潜在能源需求点”。基于包括潜在能源需求点的不同能源类型需求点与供给点,建立多能源类型混合调度优化模型,利用能源类型约束、供给点容量约束等条件,使得模型更加符合实际运营情况。提出改进后基于精英策略的遗传算法,类比碱基互补配对原则刻画单条线路存在多类型能源需求情况,结合多项指标求解得到能源补充约束下的最小额外空跑成本、供需网络优化匹配方案及各项线网效能评价。以北京市公交车GNSS长时轨迹数据作为案例进行研究,利用两阶段聚类算法筛选提取潜在能源需求点,提出了公交多能源供需匹配优化策略,并通过随机配置线路能源类型和去除关键节点进行公交多能源供需网络鲁棒性检验。研究结果表明:本文模型相较于基准模型,燃油、氢能源、电动公交线路的能源供需优化匹配成本分别降低7.12%、9.07%、9.82%,优化算法适应度函数提升5.18%,有助于公交能源供给侧优化配置及能源需求的智慧化管理。同时,针对公交车多能源类型混合运营现状,需要对能源需求、能源补充进行协同调整实现供需关系平衡,并关注重要能源补充节点的建设和运营,从而提升网络稳定性与资源利用效率。

     

  • 图  1  公交车不同能源补充线路对比示意图

    Figure  1.  Schematic diagram illustrating the comparative analysis of diverse bus energy supply routes

    图  2  基于精英策略的遗传算法种群个体编码图

    Figure  2.  Graphical representation of individual encoding in a population of a genetic algorithm based on elite strategy

    图  3  模型验证效果

    Figure  3.  Model validation results

    图  4  单日公交轨迹数据可视化

    Figure  4.  Visualization of daily bus trajectory data

    图  5  潜在能源需求点挖掘

    Figure  5.  Exploration of potential energy demand points

    图  6  就近匹配和模型优化结果对比

    Figure  6.  Comparison of the results of nearest matching and model optimization

    图  7  不同算法迭代收敛曲线

    Figure  7.  Iterative convergence curves of different algorithms

    图  8  多轮次随机选取25、50、75、100条线路改变其能源类型后能源供需网络适应性结果

    Figure  8.  The result of energy supply-demand network adaptability after multi-round random selection of 25,50,75 and 100 lines to change their energy type

    图  9  鲁棒性分析结果

    Figure  9.  Robustness analysis result

    图  10  不同补能站点失效情况下评价指标变化

    Figure  10.  Changes in evaluation indicators under different energy supply station failure conditions

    图  11  公交能源补充网络对车辆和站点能源类型改造的参数响应

    Figure  11.  Parameter response of bus energy supply network to the transformation of vehicle and station energy types

    表  1  示例网络各能源节点坐标

    Table  1.   Coordinates of energy nodes in the example network

    节点 横坐标 纵坐标
    A 4.76 6.75
    B 6.21 4.74
    C 4.81 0.39
    a 6.38 6.44
    b 1.73 6.09
    c 3.83 4.13
    d 2.46 2.94
    e 2.67 2.75
    f 2.33 1.16
    g 5.78 1.46
    下载: 导出CSV

    表  2  实例网络优化前后各项指标对比

    Table  2.   Comparison of various metrics before and after the optimization of empirical network

    能源类型 优化前 优化后 适应度变化率/%
    额外空跑距离/(×103 km) 资源利用度 未过载度 适应度 额外空跑距离/(×103 km) 资源利用度 未过载度 适应度
    混合 3.843 0.017 0.467 0.536 2.580 0.224 0.933 0.934 74.25
    燃油 1.573 0.023 0.500 0.597 1.461 0.250 1.000 1.006 68.51
    氢能 2.504 0.026 0.429 0.560 2.277 0.500 0.857 1.215 116.96
    电能 4.632 0.087 0.700 0.671 4.177 0.258 1.000 0.962 43.37
    网络 12.55 0.017 0.560 0.398 10.49 0.169 0.960 0.731 83.67
    下载: 导出CSV

    表  3  不同方法的分配结果对比

    Table  3.   Comparison of allocation results of different methods

    能源类型 模拟退火算法 改进遗传算法 适应度变化率/%
    额外空跑距离/(×103 km) 资源利用度 未过载度 适应度 额外空跑距离/(×103 km) 资源利用度 未过载度 适应度
    混合 3.418 0.196 0.933 0.888 2.580 0.224 0.933 0.934 5.18
    燃油 1.358 0.250 1.000 1.008 1.461 0.250 1.000 1.006 -0.20
    氢能 1.991 0.316 0.857 1.021 2.277 0.500 0.857 1.215 18.02
    电能 4.224 0.258 1.000 0.961 4.177 0.258 1.000 0.962 0.10
    网络 10.94 0.156 0.960 0.708 10.49 0.169 0.960 0.731 3.15
    下载: 导出CSV
  • [1] 陶志梅, 孙钰. 供需协调视角下城市公共基础设施系统效用提升研究[J]. 深圳大学学报(人文社会科学版), 2016, 33 (3): 100-105.

    TAO Z M, SUN Y. Enhancing the utility of urban public infrastructure system from the perspective of coordination between supply and demand[J]. Journal of Shenzhen University (Humanities and Social Sciences Edition), 2016, 33(3): 100-105. (in Chinese)
    [2] LI W L, HE Y, HU S H, et al. Planning dynamic wireless charging infrastructure for battery electric bus systems with the joint optimization of charging scheduling[J]. Transportation Research Part C: Emerging Technologies, 2024, 159: 104469. doi: 10.1016/j.trc.2023.104469
    [3] 顾天奇, 刘雨承, 祝海荣, 等. 新能源公交充电场站的区域供需平衡模型[J]. 交通与运输, 2021, 37(5): 76-80.

    GU T Q, LIU Y C, ZHU H R, et al. Spatial supply-demand equilibrium model for new-energy bus charging stations[J]. Traffic and Transportation, 2021, 37(5): 76-80. (in Chinese)
    [4] LAI Q H, LAI C S, LAI L L. Smart energy for transportation and health in a smart city[M]. Sebastopol: IEEE Press, 2022.
    [5] 张琭璐. 新能源电动汽车充电站选址定容优化研究[D]. 兰州: 兰州理工大学, 2022.

    ZHANG L L, Optimization of location-sizing problem for new energy electric vehicle charging infrastructure[D]. Lanzhou: Lanzhou University of Technology, 2022. (in Chinese)
    [6] 张敏. 基于大数据分析的充电桩智能选址策略[J]. 大众用电, 2021, 36(3): 36-37.

    ZHANG M. Strategy of intelligent location selection of charging piles based on big data analysis[J]. Public Electricity, 2021, 36(3): 36-37. (in Chinese)
    [7] 任峰, 向月, 雷小林, 等. 基于GPS数据的电动出租车充电桩选址定容[J]. 电力自动化设备, 2022, 42(10): 273-279.

    REN F, XIANG Y, LEI X L, et al. Location and capacity determination of electric taxi charging pile based on GPS data[J]. Electric Power Automation Equipment, 2022, 42(10): 273-279. (in Chinese)
    [8] 何康, 刘少博, 沈官威, 等. 考虑智能化设施与新能源汽车的高速公路发展水平与自洽能源系统适配性评估与优化方法[J]. 交通信息与安全, 2024, 42(5): 83-98. doi: 10.3963/j.jssn.1674-4861.2024.05.009

    HE K, LIU S B, SHEN G W, et al. An evaluation and optimization method of the consistency between self-consistent energy systems and highway development levels considering intelligent facilities and new energy vehicles[J]. Journal of Transport Information and Safety, 2024, 42(5): 83-98. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.05.009
    [9] 胡杰. 北京公交车能源站的布局与优化[J]. 城市公共交通, 2023(1): 23-25.

    HU J. Layout and optimization of Beijing bus energy station[J]. Urban Public Transport, 2023(1): 23-25. (in Chinese)
    [10] EDVARD A, MINA E, MAIK P, et al. Bus charging management based on AI prediction and MILP optimization[C]. ETG Congress 2023, Kassel, Germany: VDE(ITG), 2023.
    [11] HE Y, LIU Z C, SONG Z Q. Integrated charging infrastructure planning and charging scheduling for battery electric bus systems[J]. Transportation Research Part D: Transport and Environment, 2022, 111: 103437. doi: 10.1016/j.trd.2022.103437
    [12] 刘小寒, 程颖, 王聘玺等. "光储充"一体化公交充电设施两阶段鲁棒选址方法[J]. 中国公路学报, 2024, 37(4): 14-23.

    LIU X H, CHENG Y WANG P X, et al. Two-stage robust location approach of solar-powered bus charging infrastructure integrated with energy storage[J]. China Journal of Highway and Transport, 2024, 37(4): 14-23. (in Chinese)
    [13] 何大伟. 交通能源系统车辆优化调度模型及策略研究[D]. 北京: 北京交通大学, 2022.

    HE D W. Research on electric vehicle optimal dispatching model and strategy in traffic energy system[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
    [14] LI C L, LIN S, ZHANG H L, et al. A sequence and network embedding method for bus arrival time prediction using gnss trajectory data only[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5024-5038. doi: 10.1109/TITS.2023.3237320
    [15] 吴海东, 臧力卓, 肖百卉, 等. 基于新能源公交大数据的驾驶行为经济性评估[J]. 中国公路学报, 2022, 35(3): 177-190.

    WU H D, ZANG L Z, XIAO B H, et al. Evaluation of driving behavior economy based on bid data of new energy bus[J]. China Journal of Highway and Transport, 2022, 35 (3): 177-190. (in Chinese)
    [16] RATHACHAI C, AGACHAI S, THANUNCHAI T. GNSS data analytics for the assessment of public city bus transportation service quality in Bangkok[J]. Sustainability. 2023, 15 (7): 5618. doi: 10.3390/su15075618
    [17] SUN Y J, WU M G, LI H E. Using GPS trajectories to adaptively plan bus lanes[J]. Applied Sciences. 2021, 11(3): 1035. doi: 10.3390/app11031035
    [18] IVAN P, DMITRY P, ANDREY G, et al. Development of a method for selecting bus rapid transit corridors based on the economically viable passenger flow criterion[J]. Sustainability, 2023, 15(3): 2391. doi: 10.3390/su15032391
    [19] 李显林. 基于GPS轨迹数据的公交调度方案优化研究[D]. 兰州: 兰州交通大学, 2022.

    LI X L. Research on optimization of public transport dispatching scheme based on GPS trajectory data[D]. Lanzhou: Lanzhou Jiaotong University, 2022. (in Chinese)
    [20] 黄洪滔, 肖梅, 刘倩, 等. 基于GPS数据的公交站运行状态分析[J]. 深圳大学学报(理工版), 2023, 40(3): 326-334.

    HUANG H T, XIAO M, LIU Q, et al. Analysis of bus-stop operating state based on GPS data[J]. Journal of Shenzhen University(Science and Technology Edition), 2023, 40(3): 326-334. (in Chinese)
    [21] SHAN X F, WANG C S, ZHOU D Q. Interfering spatiotemporal features and causes of bus bunching using empirical GPS trajectory data[J]. Journal of Grid Computing, 2023, 21 (1), 15. doi: 10.1007/s10723-023-09652-3
    [22] 王玉生, 罗欣欣, 单香琦. 电动公交车队置换与充电设施布局协同优化[J]. 中国公路学报, 2024, 37(4): 72-83.

    WANG Y S, LUO X X, SHAN X Q. Collaborative optimization of electric bus fleet replacement and charging facility layout[J]. China Journal of Highway and Transport, 2024, 37 (4): 72-83. (in Chinese)
    [23] 邓红星, 白伊杨. 考虑轨迹数据的公交运行状态识别[J]. 重庆理工大学学报(自然科学), 2023, 37(2): 233-240.

    DENG H, BAI Y. Research of state recognition and application of GPS-based bus operation[J]. Journal of Chongqing University of Technology(Natural Science), 2023, 37(2): 233-240. (in Chinese)
    [24] 陈馨, 马军, 侯剑锋, 等. 基于GPS数据的公交线路延误计算方法[J]. 中国水运(下半月), 2022, 22(7): 30-32.

    CHEN X, MA J, HOU J F, et al. Methodology for estimating bus route delays based on GPS data[J]. China Waterway(the second half of the month), 2022, 22(7): 30-32. (in Chinese)
    [25] CRUZ M, BARBOSA L. Learning GPS point representations to detect anomalous bus trajectories[J]. IEEE Access, 2020, (8): 229006-229017.
    [26] 赵彬. 基于GPS轨迹的公交线路及站点抽取研究与应用[D]. 天津: 天津大学, 2016.

    ZHAO B. Research of bus lines and sites extraction based on GPS trajectory and its application[D]. Tianjin: Tianjin University, 2016. (in Chinese)
    [27] 马晓磊, 闫昊阳, 缪然. 考虑财政补贴的电动公交车队置换优化模型[J]. 交通运输系统工程与信息, 2021, 21(3): 200-205.

    MA X L, YAN H Y, MIAO R. Optimization model of electric bus fleet replacement considering financial subsidy[J]. Transportation System Engineering and Information, 2021, 21(3): 200-205. (in Chinese)
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  10
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-24
  • 网络出版日期:  2025-10-11

目录

    /

    返回文章
    返回