留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于组合赋权的网联HUD预警系统综合效用评价方法

王彦峰 张钰 赵晓华 杨艳群

王彦峰, 张钰, 赵晓华, 杨艳群. 基于组合赋权的网联HUD预警系统综合效用评价方法[J]. 交通信息与安全, 2025, 43(3): 74-84. doi: 10.3963/j.jssn.1674-4861.2025.03.008
引用本文: 王彦峰, 张钰, 赵晓华, 杨艳群. 基于组合赋权的网联HUD预警系统综合效用评价方法[J]. 交通信息与安全, 2025, 43(3): 74-84. doi: 10.3963/j.jssn.1674-4861.2025.03.008
WANG Yanfeng, ZHANG Yu, ZHAO Xiaohua, YANG Yanqun. Evaluation of Comprehensive Utility of Connected HUD Warning System Based on Combination Weighting Method[J]. Journal of Transport Information and Safety, 2025, 43(3): 74-84. doi: 10.3963/j.jssn.1674-4861.2025.03.008
Citation: WANG Yanfeng, ZHANG Yu, ZHAO Xiaohua, YANG Yanqun. Evaluation of Comprehensive Utility of Connected HUD Warning System Based on Combination Weighting Method[J]. Journal of Transport Information and Safety, 2025, 43(3): 74-84. doi: 10.3963/j.jssn.1674-4861.2025.03.008

基于组合赋权的网联HUD预警系统综合效用评价方法

doi: 10.3963/j.jssn.1674-4861.2025.03.008
基金项目: 

国家自然科学基金项目 52072012

详细信息
    作者简介:

    王彦峰(1975—),硕士,副教授. 研究方向:车辆工程. E-mail:jtxxwyf@163.com

    通讯作者:

    张钰(1998—),博士生. 研究方向:人机交互、驾驶行为与交通安全等. E-mail:2451098792@qq.com

  • 中图分类号: U467.1+4

Evaluation of Comprehensive Utility of Connected HUD Warning System Based on Combination Weighting Method

  • 摘要: 为解决平视显示(head-up display, HUD)预警系统有效性评价维度单一、量化不足的问题,依托搭建的驾驶模拟平台,设计开发城市道路行人过街网联实验场景和三种预警系统(baseline/低头显示(head-down display,HDD)/HUD),实验测试获取驾驶人视觉、行为和主观数据;基于人因工程学、系统工程理论和交通工程学,结合驾驶人对于HUD预警系统的实际需求,从系统的安全、可靠、平稳及高效4个维度提取制动反应时间、后侵占时间、最大瞳孔面积、单位分心指数和恢复速度等10个典型关键指标建立综合评估指标体系;采用基于层次分析法(analytic hierarchy process,AHP)-熵权法(entropy weight method,EWM)的主客观赋权法,确定评估指标体系的组合权重;最后采用模糊综合评价方法量化3种预警系统在行人过街事件中的单一维度效用和综合效用。单一维度效用结果显示,HDD和HUD在4种维度上的效用表现存在差异,单一维度量化无法全面评估预警系统效用。具体而言,HDD和HUD系统在安全性得分上相较于Baseline条件分别提高了6.25%和18.98%;在可靠性方面,HDD略有下降0.61%,而HUD提高了1.97%;在稳定性上,HDD和HUD得分分别提高了5.97%和10.99%;在高效性方面,HDD和HUD得分分别下降了2.47%和3.5%,其中HUD表现相对较差。综合效用结果表明,在行人过街事件中,与基线条件相比,HDD和HUD系统的综合效用值分别提升了1.86%和6.36%。相比而言,HUD在兼顾安全、可靠、平稳和高效方面更具有优势,但未来HUD预警系统的设计仍需重点权衡安全与效率的关系。

     

  • 图  1  驾驶模拟实验测试平台

    Figure  1.  Driving simulation experiment testing platform

    图  2  实验设备

    Figure  2.  Experimental equipment

    图  3  HDD/HUD界面设计

    Figure  3.  HDD/HUD interface design

    图  4  HDD/HUD设置位置

    Figure  4.  Location of HDD/HUD Settings

    图  5  行人过街场景设计

    Figure  5.  Pedestrian crossing scenario design

    图  6  实验流程

    Figure  6.  Experimental process

    图  7  指标体系

    Figure  7.  Index system

    图  8  人-车冲突时空轨迹图

    Figure  8.  Space-time trajectory of human-vehicle conflict

    图  9  AttenD算法规则

    Figure  9.  Algorithm rules of AttenD

    图  10  层次结构模型

    Figure  10.  Hierarchy model

    图  11  系统效用得分结果

    Figure  11.  Results of system utility score

    表  1  描述性统计及Friedman检验结果

    Table  1.   Descriptive statistics and Friedman test results

    维度 变量 水平 均值 Friedman检验结果 成对比较结果
    统计检验量 自由度 整体显著性
    安全水平 制动反应时间/s Baseline 4.33±0.77 30.882 2 0.000
    HDD 3.66±1.15
    HUD 2.22±1
    最小碰撞时间/s Baseline 1.8±1.2 21.412 2 0.000
    HDD 2.65±1.41
    HUD 4.23±1.98
    后侵占时间/s Baseline 3.22±2.62 11.118 2 0.004
    HDD 3.76±1.43
    HUD 4.65±1.3
    可靠水平 最大瞳孔面积/mm Baseline 10.53±2.82 10 2 0.007
    HDD 10.73±3.14
    HUD 8.98±1.85
    单位分心指数 Baseline 0.07±0.09 8.194 2 0.017
    HDD 0.07±0.08
    HUD 0.13±0.12
    平稳水平 加速度标准差/(m/s2 Baseline 2.78±0.71 20.529 2 0.000
    HDD 2.39±0.79
    HUD 1.84±0.59
    车道偏移标准差/m Baseline 0.14±0.1 5.471 2 0.065
    HDD 0.11±0.08
    HUD 0.14±0.09
    高效水平 初始速度/(km/h) Baseline 55.27±7.62 6.529 2 0.038
    HDD 52.4±7.18
    HUD 51.13±6.57
    平均速度/(km/h) Baseline 33.66±9.42 10.059 2 0.007
    HDD 31.37±4.37
    HUD 28.35±3.84
    恢复速度/(km/h) Baseline 25.16±13 2.882 2 0.237
    HDD 26.72±9.3
    HUD 28.46±7.59
    下载: 导出CSV

    表  2  基于K-means聚类的等级取值范围

    Table  2.   Range of different grades based on K-means clustering

    指标 1(优秀) 2(良好) 3(一般) 4(及格) 5(差)
    制动反应时间/s [0.010, 1.840] [1.841, 2.883] [2.884, 3.890] [3.891, 4.822] [4.823, 6.580]
    最小碰撞时间/s [7.488, 10.293] [5.162, 7.487] [3.369, 5.161] [1.711, 3.368] [0.000, 1.710]
    后侵占时间/s [6.967, 9.820] [4.859, 6.966] [3.344, 4.858] [0.686, 3.343] [-2.250, 0.685]
    最大瞳孔面积/mm² [4.524, 7.741] [7.742, 10.066] [10.067, 12.457] [12.458, 15.507] [15.508, 19.129]
    单位分心指数 [0.000, 0.086] [0.087, 0.262] [0.263, 0.502] [0.503, 0.707] [0.708, 0.795]
    加速度标准差/(m/s²) [0.530, 1.471] [1.472, 2.021] [2.022, 2.591] [2.592, 3.249] [3.250, 4.130]
    车道偏移标准差/m [0.015, 0.092] [0.093, 0.168] [0.169, 0.328] [0.329, 0.510] [0.511, 0.606]
    初始速度/(km/h) [66.450, 75.802] [55.145, 66.449] [47.477, 55.144] [38.558, 47.476] [29.137, 38.557]
    平均速度/(km/h) [58.016, 65.303] [45.196, 58.015] [34.406, 45.195] [23.896, 34.405] [18.637, 23.895]
    恢复速度/(km/h) [57.984, 75.336] [35.320, 57.983] [26.456, 35.319] [18.623, 26.455] [3.552, 18.622]
    下载: 导出CSV

    表  3  不同预警系统组指标隶属度矩阵

    Table  3.   Membership matrix of indicators of different warning system groups

    指标 Baseline HDD HUD
    1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
    制动反应时间/s 0.00 0.07 0.20 0.54 0.19 0.00 0.15 0.51 0.26 0.08 0.23 0.53 0.18 0.06 0.00
    最小碰撞时间/s 0.00 0.06 0.15 0.42 0.37 0.00 0.08 0.21 0.52 0.19 0.00 0.17 0.61 0.18 0.04
    后侵占时间/s 0.00 0.16 0.35 0.41 0.08 0.00 0.17 0.56 0.26 0.01 0.09 0.30 0.43 0.18 0.00
    最大瞳孔面积/mm² 0.10 0.28 0.47 0.15 0.00 0.08 0.25 0.52 0.16 0.00 0.19 0.53 0.20 0.08 0.00
    单位分心指数 0.55 0.35 0.08 0.02 0.00 0.55 0.35 0.08 0.02 0.00 0.27 0.53 0.16 0.04 0.00
    加速度标准差/(m/s²) 0.00 0.09 0.26 0.47 0.17 0.00 0.15 0.62 0.22 0.01 0.18 0.50 0.23 0.09 0.00
    车道偏移标准差/m 0.20 0.47 0.26 0.07 0.00 0.30 0.46 0.19 0.05 0.00 0.21 0.50 0.23 0.06 0.00
    初始速度/(km/h) 0.08 0.39 0.38 0.15 0.00 0.00 0.22 0.61 0.17 0.00 0.00 0.18 0.61 0.18 0.03
    平均速度/(km/h) 0.00 0.11 0.34 0.41 0.13 0.00 0.08 0.25 0.50 0.16 0.00 0.06 0.18 0.56 0.21
    恢复速度/(km/h) 0.00 0.14 0.28 0.39 0.19 0.00 0.17 0.34 0.32 0.18 0.00 0.18 0.42 0.26 0.14
    下载: 导出CSV

    表  4  判断矩阵的标度和含义

    Table  4.   Scale and meaning of judgment matrix

    标度 含义(aij)
    1 因素i与因素j同等重要
    3 因素i比因素j稍微重要
    5 因素i比因素j明显重要
    7 因素i比因素j强烈重要
    9 因素i比因素j极端重要
    2, 4, 6, 8 上述2个相邻判断的中间值
    倒数 j比因i更重要,aij = 1/aji
    下载: 导出CSV

    表  5  判断矩阵结果

    Table  5.   Results of judgment matrix

    因素 安全 可靠 平稳 高效
    安全 1 5 3 5
    可靠 1/5 1 1 3
    平稳 1/3 1 1 3
    高效 1/5 1/3 1/3 1
    下载: 导出CSV

    表  6  权重向量与一致性结果

    Table  6.   Results of weight vector and consistency

    因素 特征向量 权重值 λmax CI CR
    安全 2.944 0.565 0 4.116 0.039 0.044
    可靠 0.88 0.169 0
    平稳 1 0.191 9
    高效 0.386 0.074 1
    下载: 导出CSV

    表  7  EWM权重计算结果

    Table  7.   Weight result calculated by EWM

    层面 指标 熵值ei 差异系数gi 权重w"i
    安全 制动反应时间/s 0.566 0.434 0.096
    最小碰撞时间/s 0.563 0.437 0.097
    后侵占时间/s 0.598 0.402 0.089
    可靠 最大瞳孔面积/mm 0.430 0.570 0.126
    单位分心指数 0.621 0.379 0.084
    平稳 加速度标准差/(m/s) 0.554 0.447 0.099
    车道偏移标准差/m 0.562 0.438 0.097
    高效 初始速度/(km/h) 0.411 0.589 0.130
    平均速度/(km/h) 0.547 0.453 0.100
    恢复速度/(km/h) 0.619 0.381 0.084
    下载: 导出CSV
  • [1] 王长帅, 邵永成, 朱彤, 等. 城市道路中间路段人车冲突中网联预警信息对驾驶行为的影响[J]. 交通信息与安全, 2024, 42(4): 81-89. doi: 10.3963/j.jssn.1674-4861.2024.04.009

    WANG C S, SHAO Y C, ZHU T, et al. Impacts of connected warning information on driver behavior in pedestrian-vehicle conflict at the mid-block of urban roads[J]. Journal of Transport Information and Safety, 2024, 42(4): 81-89. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.04.009
    [2] ALI Y, SHARMA A, HAQUE M M, et al. The impact of the connected environment on driving behavior and safety: a driving simulator study[J]. Accident Analysis & Prevention, 2020, 144: 105643.
    [3] LI X, RONG J, LI Z, et al. Modeling drivers'acceptance of augmented reality head-up display in connected environment[J]. Displays, 2022, 75: 102307. doi: 10.1016/j.displa.2022.102307
    [4] TRETTEN P, GÄRLING A, NILSSON R, et al. An on-road study of head-up display: preferred location and acceptance levels[C]. Human Factors and Ergonomics Society Annual Meeting, California, USA: SAGE Publications, 2011.
    [5] LIU Y C, WEN M H. Comparison of head-up display(HUD) vs. head-down display(HDD): driving performance of commercial vehicle operators in Taiwan[J]. International Journal of Human-Computer Studies, 2004, 61(5): 679-697. doi: 10.1016/j.ijhcs.2004.06.002
    [6] WITTMANN M, KISS M, GUGG P, et al. Effects of display position of a visual in-vehicle task on simulated driving[J]. Applied Ergonomics, 2006, 37(2): 187-199. doi: 10.1016/j.apergo.2005.06.002
    [7] EYRAUD R, ZIBETTI E, BACCINO T. Allocation of visual attention while driving with simulated augmented reality[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2015, 32: 46-55. doi: 10.1016/j.trf.2015.04.011
    [8] HWANG Y, PARK B J, KIM K H. Effects of Augmented-reality head-up display system use on risk perception and psychological changes of drivers[J]. Etri Journal, 2016, 38(4): 757-766.
    [9] LI R, CHEN Y V, ZHANG L, et al. Effects of perception of head-up display on the driving safety of experienced and inexperienced drivers[J]. Displays, 2020, 64: 101962. doi: 10.1016/j.displa.2020.101962
    [10] YANG Z, SHI J, ZHANG Y, et al. Head-up display graphic warning system facilitates simulated driving performance[J]. International Journal of Human-Computer Interaction, 2019, 35(9): 796-803. doi: 10.1080/10447318.2018.1496970
    [11] WU, Y, ABDEL-ATY, M, PARK, J, ZHU, J. Effects of crash warning systems on rear-end crash avoidance behavior under fog conditions[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 481-492. doi: 10.1016/j.trc.2018.08.001
    [12] WINKLER S, KAZAZI J, VOLLRATH M. How to warn drivers in various safety-critical situations-different strategies, different reactions[J]. Accident Analysis & Prevention, 2018, 117: 410-426.
    [13] BRIJS T, MAURIELLO F, MONTELLA A, et al. Studying the effects of an advanced driver-assistance system to improve safety of cyclists overtaking[J]. Accident Analysis & Prevention, 2022, 174: 106763.
    [14] YE C, WANG X, MORRIS A, et al. Pedestrian crash causation analysis and active safety system calibration[J]. Accident Analysis & Prevention, 2024, 195: 107404.
    [15] WHO. Global status report on road safety[R/OL]. (2023-12-13)[2025-6-28]. https://www.who.int/publications/i/item/9789240086517
    [16] 杜昊天, 陈丰, 李琛, 等. 低能见度下人行横道发光标线视认及预警效果研究[J]. 交通信息与安全, 2024, 42(2): 59-66. doi: 10.3963/j.jssn.1674-4861.2024.02.006

    DU H T, CHEN F, LI C, et al. An evaluation for impacts of illuminating crosswalk markings on driving safety under low visibility conditions[J]. Journal of Transport Information and Safety, 2024, 42(2): 59-66. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.02.006
    [17] Istituto Nazionale di Statistica. ACI-ISTAT incidenti stradali 2017[R/OL]. (2019-09-17)[2025-06-28]. https://www.istat.it/it/files//2018/07/Incidenti-stradali_2017.
    [18] YUE L, ABDEL-ATY M, WU Y, et al. Influence of pedestrian-to-vehicle technology on drivers'response and safety benefits considering pre-crash conditions[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 73: 50-65. doi: 10.1016/j.trf.2020.06.012
    [19] HAQUE M M, OVIEDO-TRESPALACIOS O, SHARMA A, et al. Examining the driver-pedestrian interaction at pedestrian crossings in the connected environment: a hazard-based duration modelling approach[J]. Transportation Research Part A: Policy and Practice, 2021, 150: 33-48. doi: 10.1016/j.tra.2021.05.014
    [20] WINKLER S, KAZAZI J, VOLLRATH M. Distractive or supportive-how warnings in the head-up display affect drivers'gaze and driving behavior[C]. 18th International IEEE Conference on Intelligent Transportation Systems, Canary Islands, SPAIN: University of Las Palmas de Gran Canaria, 2015.
    [21] HAJISEYEDJAVADI F, ZHANG T, AGRAWAL R, et al. Effectiveness of visual warnings on young drivers hazard anticipation and hazard mitigation abilities[J]. Accident Analysis & Prevention, 2018, 116: 41-52.
    [22] LARGE D R, KIM H, MERENDA C, et al. Investigating the effect of urgency and modality of pedestrian alert warnings on driver acceptance and performance[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 60: 11-24. doi: 10.1016/j.trf.2018.09.028
    [23] 文晗. 基于情境感知的汽车人机交互界面设计研究[D]. 长沙: 湖南大学, 2016.

    WEN H. Study on automotive human machine interface design based on context awareness[D]. Changsha: Hunan University, 2016. (in Chinese)
    [24] 张桂伟. 车载平视显示器HUD视觉交互界面设计研究[D]. 广州: 华南理工大学, 2015.

    ZHANG G W. The design research of head-up display interface interaction[D]. Guangzhou: South China University of Technology, 2015. (in Chinese)
    [25] 边扬, 张钰, 赵晓华, 等. 行人过街事件网联HUD预警系统对驾驶行为的影响[J]. 华南理工大学学报(自然科学版), 2024, 52(4): 114-125.

    BIAN Y, ZHANG Y, ZHAO X H, et al. Effect of Connected HUD warning system on driving behavior for pedestrian crossing events[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52 (4): 114-125. (in Chinese)
    [26] ZHAO X, CHEN H, LI H, et al. Development and application of connected vehicle technology test platform based on driving simulator: case study[J]. Accident Analysis & Prevention, 2021, 161: 106330.
    [27] KIRCHER K, AHLSTRÖM C. The driver distraction detection algorithm AttenD[M]. Boca Raton: CRC Press, 2017.
    [28] 梁海峰, 刘子嫣. 基于AHP-熵权法-模糊综合分析的智能配电网综合效益评估[J]. 华北电力大学学报(自然科学版), 2023, 50(1): 48-55.

    LIANG H F, LIU Z Y. Comprehensive benefit evaluation of smart distribution network based on analytic hierarchy process-entropy method-fuzzy comprehensive analysis[J]. Journal of North China Electric Power University(Natural Science Edition), 2023, 50(1): 48-55. (in Chinese)
    [29] 赵浩威, 钟鸣, 李林锋, 等. 基于改进组合赋权的港口自洽能源系统规划方案综合评价方法[J]. 交通信息与安全, 2024, 42(5): 148-162. doi: 10.3963/j.jssn.1674-4861.2024.05.014

    ZHAO H W, ZHONG M, LI L F, et al. A Comprehensive evaluation method for the planning of self-sufficient energy system for ports based on improved composite weighting[J]. Journal of Transport Information and Safety, 2024, 42(5): 148-162. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.05.014
    [30] 周全超, 张洪清, 焦扬, 等. 基于组合赋权法的煤层顶板突水危险性评价[J]. 科学技术与工程, 2022, 22(9): 3497-3503.

    ZHOU Q C, ZHANG H Q, JIAO Y, et al. Evaluation of the risk of water inrush from coal roof based on combination weighting method[J]. Science Technology and Engineering, 2022, 22(9): 3497-3503. (in Chinese)
    [31] 赵晓华, 鞠云杰, 李佳, 等. 基于驾驶行为和视觉特性的长大隧道突起路标作用效果评估[J]. 中国公路学报, 2020, 33 (6): 29-41.

    ZHAO X H, JUN Y J, LI J, et al. Evaluation of the effect of RPMs in extra-long tunnels based on driving behavior and visual characteristics[J]. Chinese Journal of Highway and Transport, 2020, 33(6): 29-41. (in Chinese)
    [32] WICKENS C D, DIXON S R, SEPPELT B. Auditory preemption versus multiple resources: who wins in interruption management?[C]. Human Factors and Ergonomics Society Annual Meeting, California, USA: SAGE Publications, 2005.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-01
  • 网络出版日期:  2025-10-11

目录

    /

    返回文章
    返回