An Optimization Method for Joint Control of Merging Zones in Urban Tunnels of Considerable Length
-
摘要: 针对城市超长隧道合流区的交通拥堵问题,研究了融合主线可变限速与匝道信号控制的联合优化控制方法。根据合流瓶颈区及其下游的不同交通状态组合,生成了四级控制策略。通过综合考虑匝道汇入、路段间速度差异和驾驶人服从度,对传统元网络(meta network,METANET)模型进行了改进;同时,通过新增匝道排队容量控制机制,对经典ALINEA算法进行了扩展,实现了可变限速与匝道信号的联合控制。在此基础上,结合模型预测控制方法,对不同交通状态下的限速值和匝道信号配时进行了优化。依托VISSIM仿真平台,构建武汉两湖隧道场景,并利用COM接口与Python二次开发,实现仿真路段交通参数的实时获取与控制。实验对比多种管控策略,包括动态可变限速、匝道信号控制与联合控制。仿真结果表明,①提出的联合管控策略相比无管控策略,减少瓶颈区车辆行程时间17.7%,降低车均延误时间62.96%;②与单一控制策略相比,联合管控可显著提高平均车速和交通流稳定性,特别是在高流量拥堵情况下效果更为显著;③在联合控制策略下,路段最低平均车速提升20.38%,瓶颈区及下游缓行时间减少22.2%,低速区域的空间范围和持续时间均明显缩短,且车速波动幅度大幅减小。面对多种复杂交通流,联合控制策略展现出良好的动态自适应能力,能够根据流量结构自动调整主线与匝道的控制强度,实现对瓶颈区交通负荷的合理分配。Abstract: To address traffic congestion at merging zones in urban tunnels of considerable length, an optimization method for joint control that integrates variable speed limits in mainlines and signal control at ramps is proposed. A four-level control strategy is developed based on the combination of different traffic states in merging bottleneck area and downstream section. The traditional meta network (METANET) model is modified by comprehensively considering ramp inflow, speed differences among sections, and driver compliance. Meanwhile, the classical ALINEA algorithm is extended by introducing a control mechanism for queue capacity at ramps, enabling the integration of variable speed limits and ramp signal control. On this basis, a model predictive control approach is employed to optimize speed limits and ramp signal timings under different traffic states. Using the VISSIM simulation platform, the scenario of Lianghu Tunnel in Wuhan is developed, which allows to acquire and control the traffic parameters in real-time through the COM interface and secondary development with Python. Various control strategies are compared, including dynamic variable speed limits, ramp signal control, and joint control. Simulation results show that: ①Compared to the situation with no control, the proposed joint control strategy reduces travel time in the bottleneck area by 17.7% and decreases the average delay time per vehicle by 62.96%. ②Compared to single control strategy, the joint control strategy significantly improves average speed and stability of traffic flow, with especially notable effects under heavy congestion conditions. ③Under the joint control strategy, the minimum average speed at road sections increases by 20.38%, the duration of slow traffic in the bottleneck area and at the downstream section decreases by 22.2%, and both the spatial scope and duration of low-speed regions are significantly reduced with a substantial decrease in speed fluctuations. When facing various complex traffic flow conditions, the joint control strategy demonstrates good dynamic adaptability, automatically adjusting the control strength of the mainline and ramp according to the flow structure, thus achieving a rational distribution of traffic load in the bottleneck area.
-
Key words:
- traffic control /
- variable speed limit /
- ramp metering control /
- urban tunnel
-
表 1 METANET模型符号及含义
Table 1. METANET model symbols and meanings
符号 含义 单位 Li 路段i的长度 km vi(k) k时刻路段i的平均速度 km/h ρi(k) k时刻路段i的平均密度 veh/km T 周期 s τ 时间滞后系数 f 期望系数 m 模型参数,防止ρi(k) 过小 vf, i 路段i的自由流速度 km/h αi 模型系数 ρcr(k) 路段临界密度 veh/km V[ρi(k)] 期望速度 km/h 表 2 不同控制策略评价指标均值和标准差
Table 2. Mean and standard deviation of evaluation metrics for different control strategies
评价指标 管控策略 无管控 VSL 匝道信号控制 联合管控 均值 标准差 均值 标准差 均值 标准差 均值 标准差 瓶颈区车均行程时间 18.81 1.75 15.89 1.59 18.32 2.15 15.48 1.38 瓶颈下游车均行程时间 39.08 0.22 38.42 0.16 39.10 0.21 38.43 0.15 瓶颈区平均车速 22.83 3.90 25.06 3.52 22.85 4.52 25.95 3.22 瓶颈区车均延误 27.67 18.03 11.42 5.22 23.67 17.71 10.25 4.20 表 3 3种流量输入组合值
Table 3. Three traffic input combinations
仿真时间/s 流量输入组合 主线高、匝道低 主线低、匝道高 主线高、匝道高 主线 匝道 主线 匝道 主线 匝道 > 0~1 800 4 000 600 3 000 800 3 500 750 > 1 800~3 600 4 200 620 3 200 850 3 800 800 > 3 600~5 400 4 500 620 3 200 900 4 200 800 > 5 400~7 200 4 000 600 3 000 800 4 000 750 -
[1] 陈泽恩, 陈小峰, 孔祥苗, 等. 分叉隧道合流段流动特征及局部损失特性研究[J]. 现代隧道技术, 2024, 61(3): 53-60, 84.CHEN Z E, CHEN X F, KONG X M, et al. Study on the flow characteristics and local loss characteristics of the confluence segment of bifurcate tunnel[J]. Modern Tunnelling Technology, 2024, 61(3): 53-60, 84. (in Chinese) [2] 杨晓光, 胡仕星月, 张梦雅. 智能高速公路交通应用技术发展综述[J]. 中国公路学报, 2023, 36(10): 142-164.YANG X G, HU S X Y, ZHANG M Y. Development of intelligent motorway traffic application technologies: a review[J]. China Journal of Highway and Transport, 2023, 36(10): 142-164. (in Chinese) [3] 袁胜强, 景啸, 史程祥. 城市地下互通立交通行能力计算[J]. 同济大学学报(自然科学版), 2021, 49(2): 236-242.YUAN S Q, JING X, SHI C X. Traffic capacity calculation for urban underground interchange[J]. Journal of Tongji University(Natural Science Edition), 2021, 49(2): 236-242. (in Chinese) [4] 宋瑞华, 马朝晖, 佘明星, 等. 高速公路隧道出口至互通入口最小净距研究[J]. 深圳大学学报(理工版), 2024, 41(4): 444-452.SONG R H, MA Z H, SHE M X, et al. Minimum clearance from highway tunnel exits to interchange entrances[J]. Journal of Shenzhen University Science and Engineering, 2024, 41 (4): 444-452. (in Chinese) [5] 唐进君, 付强, 王骋程, 等. 高速公路可变限速控制策略多目标优化[J]. 交通运输系统工程与信息, 2023, 23(02): 252-261.TANG J J, FU Q, WANG C C, et al. Multi-objective optimization of variable speed limit control strategy on expressway[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(2): 252-261. (in Chinese) [6] 蔺庆海, 何兆成, 谢俊, 等. 基于AVI数据与深度强化学习的城市快速路匝道协调控制方法[J]. 中国公路学报, 2023, 36 (10): 224-237.LIN Q H, HE Z C, XIE J, et al. Urban expressway coordinated ramp metering approach using automatic vehicle identification data and deep reinforcement learning[J]. Chinese Journal of Highway and Transport, 2023, 36(10): 224-237. (in Chinese) [7] 韩雨, 郭延永, 张乐, 等. 消除高速公路运动波的可变限速控制方法[J]. 中国公路学报, 2022, 35(1): 151-158.HAN Y, GUO Y Y, LIU P, et al. Variable speed limit control method to eliminate motion wave of expressway[J]. Chinese Journal of Highway and Transport, 2022, 35(1): 151-158. (in Chinese) [8] 田毕江, 胡澄宇, 杨文臣, 等. 基于驾驶模拟技术的山区高速公路桥隧群区限速值分析[J]. 公路, 2022, 67(1): 240-247.TIAN B J, HU C Y, YANG W C, et al. Analysis of speed limit value in the group area of bridges and tunnels on mountainous expressway based on driving simulation technology[J]. Highway, 2022, 67(1): 240-247. (in Chinese) [9] YU R, ABDEL-ATY M. An optimal variable speed limits system to ameliorate traffic safety risk[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 235-246. doi: 10.1016/j.trc.2014.05.016 [10] JIN J L, HUANG H L, LI Y, et al. Variable speed limit modelling to improve traffic safety and efficiency of mixed traffic flow by a two-stage framework[J]. Transportmetrica A: Transport Science, 2021(3): 1-25. [11] 白如玉, 焦朋朋, 陈越, 等. 基于强化学习的车道级可变限速控制策略[J]. 交通信息与安全, 2024, 42(1): 105-114. doi: 10.3963/j.jssn.1674-4861.2024.01.012BAI R Y, JIAO P P, CHEN Y, et al. Differential variable speed limit control strategy based on reinforcement learning[J]. Journal of Transport Information and Safety, 2024, 42 (1): 105-114. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.01.012 [12] PAPAGERGIOU M, KOTSIALOS A. Freeway ramp metering: An overview[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(4): 271-281. doi: 10.1109/TITS.2002.806803 [13] SMARAGDIS E, PAPAGEORGIOU M. Series of new local ramp metering strategies: emmanouil smaragdis and markos papageorgiou[J]. Transportation Research Record, 2003, 1856(1): 74-86. doi: 10.3141/1856-08 [14] SU D Y, LU X Y, HOROWITZ R, et al. Coordinated ramp metering and intersection signal control[J]. International Journal of Transportation Science and Technology, 2014, 3 (2): 179-192. doi: 10.1260/2046-0430.3.2.179 [15] 邓明君, 李书行, 李响, 等. 基于主线密度预测的快速路入口匝道控制方法[J]. 交通运输系统工程与信息, 2024, 24 (4): 94-104, 126.DENG M J, LI S X, LI X, et al. Expressway entrance ramp control method based onmainline traffic density prediction[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(4): 94-104, 126. (in Chinese) [16] FREJO J R D, DE S B. Feed-forward ALINEA: a ramp metering control algorithm for nearby and distant bottlenecks[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(7): 2448-2458. [17] PASQUALE C, SACONE S, SIRI S, et al. Hierarchical centralized/decentralized event-triggered control of multiclass traffic networks[J]. IEEE Transactions on Control Systems Technology, 2020, 29(4): 1549-1564. [18] 庞明宝, 夏泽民, 栾燕海. 城市快速路多匝道协调控制信号施加策略仿真[J]. 系统仿真学报, 2018, 30(8): 3050-3057.PANG B M, XIA Z M, LUAN Y H. Inputting strategy simulation of multi-ramp coordinated control signal for urban expressway[J]. Journal of System Simulation, 2018, 30(8): 3050-3057. (in Chinese) [19] 高金勇, 罗晟, 王歆远, 等. 面向网联自动驾驶混合交通流的高速公路流量控制方法[J]. 交通信息与安全, 2023, 41 (5): 74-82. doi: 10.3963/j.jssn.1674-4861.2023.05.008GAO J Y, LUO S, WANG X Y, et al. A control method for mixed traffic flows with CAVs and HDVs on freeways[J]. Journal of Transport Information and Safety, 2023, 41(5): 74-82. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.008 [20] 周浩, 胡坚明, 张毅, 等. 快速路可变限速与匝道控制协同优化策略[J]. 交通运输系统工程与信息, 2017, 17(2): 68-75.ZHOU H, HU J M, ZHANG Y, et al. Cooperative optimization strategy of variable speed limit and ramp control on expressways[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2): 68-75. (in Chinese) [21] 吴文静, 战勇斌, 杨丽丽, 等. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52 (6): 1315-1323.WU W J, ZHAN Y B, YANG L L, et al. Coordinated control method of variable speed limit in on-ramp area considering safety distance[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1315-1323. (in Chinese) [22] CARLSON R C, PAPAMICHAIL I, PAPAGEORGIOU M. Local feedback-based mainstream traffic flow control on motorways using variable speed limits[J]. IEEE Transactions on Intelligent Transportation Systems. 2011, 12(4): 1261-1276. doi: 10.1109/TITS.2011.2156792 [23] 王焱平. 智能网联环境下城市隧道分流区通行能力模型研究[D]. 重庆: 重庆交通大学, 2024.WANG Y P. Research on traffic capacity modeling of urban tunnel diversion area under connected and autonomous vehicle environment[D]. Chongqing: Chongqing Jiaotong University, 2024. (in Chinese) -