留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向路域感知的路侧多传感器位置标定方法

黎成民 王俊骅 傅挺 上官强强

黎成民, 王俊骅, 傅挺, 上官强强. 面向路域感知的路侧多传感器位置标定方法[J]. 交通信息与安全, 2025, 43(2): 169-176. doi: 10.3963/j.jssn.1674-4861.2025.02.017
引用本文: 黎成民, 王俊骅, 傅挺, 上官强强. 面向路域感知的路侧多传感器位置标定方法[J]. 交通信息与安全, 2025, 43(2): 169-176. doi: 10.3963/j.jssn.1674-4861.2025.02.017
LI Chengmin, WANG Junhua, FU Ting, SHANGGUAN Qiangqiang. A Roadside Multi-sensor Position Calibration Method for Wide-area Perception[J]. Journal of Transport Information and Safety, 2025, 43(2): 169-176. doi: 10.3963/j.jssn.1674-4861.2025.02.017
Citation: LI Chengmin, WANG Junhua, FU Ting, SHANGGUAN Qiangqiang. A Roadside Multi-sensor Position Calibration Method for Wide-area Perception[J]. Journal of Transport Information and Safety, 2025, 43(2): 169-176. doi: 10.3963/j.jssn.1674-4861.2025.02.017

面向路域感知的路侧多传感器位置标定方法

doi: 10.3963/j.jssn.1674-4861.2025.02.017
基金项目: 

国家自然科学基金项目 52472364

上海市2023年度“科技创新行动计划”“一带一路”国际合作项目 23210750500

中央高校基本科研业务费专项资金项目 22120250070

上海市2024年度”科技创新行动计划“启明星项目 24YF2748100

详细信息
    作者简介:

    黎成民(1998—),博士研究生. 研究方向:路侧感知. E-mail:2210185@tongji.edu.cn

    通讯作者:

    王俊骅(1979—),博士,教授. 研究方向:交通安全、交通大数据等. E-mail:benwjh@163.com

  • 中图分类号: U492.8

A Roadside Multi-sensor Position Calibration Method for Wide-area Perception

  • 摘要: 针对智慧高速公路建设中路域感知系统对桩号高精度定位的需求,以及现有标定方式在精度、效率与安全性方面的不足,研究了面向路域感知的路侧多传感器位置标定方法。通过设计搭载实时动态测量设备(real time kinematic,RTK)设备的测试车在各传感器位置定点采集高精度经纬度信息,并与人工桩号记录进行匹配,建立经纬度至桩号坐标的映射关系。进一步引入工程坐标作为中间坐标系,构建“经纬度坐标—工程坐标—桩号坐标”的统一转换路径,支持多传感器直接在桩号坐标系下完成标定。为提升标定鲁棒性与自动化程度,研究了结合道路线形先验与参数自适应能力的改进基于随机采样一致(random sample consensus,RANSAC)算法,设计平均误差指标与内点变化率曲线,借助误差阈值选择机制识别异常桩号并剔除外点,自动筛选最优标定模型。实验结果表明:本文方法实现了0.28 m的标定误差,识别并修正了5个异常桩号点,显著优于传统最小二乘法的0.63 m误差与0个异常点识别;相比截断最小二乘法方法的0.35 m误差与21个内点,以及最小中值二乘法方法的0.19 m误差但仅保留14个内点,本文方法在保持19个内点的同时,兼顾精度与数据保留率,在精度提升与鲁棒性方面实现更优权衡。最终构建的桩号坐标系下路域轨迹数据可直观表达车辆车道位置与桩号信息,验证了本方法在智能交通系统中的实用性与推广价值。

     

  • 图  1  路侧多传感器感知系统的基本单元示意图

    Figure  1.  Basic unit illustration of roadside multi-sensor tracking system

    图  2  3种坐标系关系

    Figure  2.  Relationship between three coordinate system

    图  3  路域轨迹构建过程示意图

    Figure  3.  The process of wide-area trajectory data construction

    图  4  方法流程图

    Figure  4.  The methodology flowchart

    图  5  εME计算方法

    Figure  5.  The calculation method of εME

    图  6  RTK标定方法示意图

    Figure  6.  The RTK calibration process

    图  7  模型选择

    Figure  7.  The selection of model

    图  8  标定结果

    Figure  8.  The calibration result

    图  9  误差对比图示

    Figure  9.  Comparison of errors

    图  10  桩号坐标系下的路域轨迹数据

    Figure  10.  Wide-area trajectory data in stake number coordinate system

    表  1  匹配后的定位数据

    Table  1.   The matched location data

    点位 粧号坐标系 工程坐标系 UTM坐标系
    k/m b/m x/m y/m xlat /m ylon/m
    1 439 648 14.3 148 765.3 228 130 772 467.6 246 253 0
    2 441 395 14.3 149 220.3 229 811.3 774 144.2 246 301 9
    3 441 745 14.3 149 327.8 230145.2 774 476 246 313 4
    4 442 093 14.3 149 452.3 230 471 774 801.3 246 326 5
    5 442 445 14.3 149 595.7 230 793.3 775 119 246 341 4
    $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$
    24 449 792 14.3 152 758.4 237 213.7 781 480.2 246 669 0
    下载: 导出CSV
  • [1] 杨洋, 贺昆, 王云鹏, 等. 面向动态交通流的高速公路事故风险模型空间移植研究[J]. 交通运输系统工程与信息, 2023, 23(3): 174-186.

    YANG Y, HE K, WANG Y P, et al. Spatial transplantation for modeling of freeway traffic crash risk based on dynamic traffic flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(3): 174-186. (in Chinese)
    [2] WANG J H, SONG H, FU T, et al. Crash prediction for freeway work zones in real time: a comparison between convolutional neural network and binary logistic regression model[J]. International Journal of Transportation Science and Technology, 2022, 11(3): 484-495.
    [3] YANG D, WU Y, SUN F, et al. Freeway accident detection and classification based on the multi-vehicle trajectory data and deep learning model[J]. Transportation Research Part C: Emerging Technologies, 2021, 130(9): 103303.
    [4] 杨东锋, 戴杰, 张玥妍, 等. 高速公路路侧雷达布设间距对交通事故风险评估精度的影响[J]. 交通信息与安全, 2023, 41(2): 28-35. doi: 10.3963/j.jssn.1674-4861.2023.02.003

    YANG D F, DAI J, ZHANG Y Y, et al. Effects of spacing of highway roadside millimeter-wave radar detectors on the accuracy of a crash risk evaluation model[J]. Journal of Transport Information and Safety, 2023, 41(2): 28-35. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.003
    [5] WANG J H, FU T, XUE J T, et al. Realtime wide-area vehicle trajectory tracking using millimeter-wave radar sensors and the open TJRD TS dataset[J]. International Journal of Transportation Science and Technology, 2023, 12(1): 273-290.
    [6] ZHANG C, WEI J, HU A S, et al. A novel method for calibration and verification of roadside millimetre-wave radar[J]. IET Intelligent Transport Systems, 2022, 16(3): 408-419.
    [7] ZHANG C, WEI J, DAI J, et al. A roadside millimeter-wave radar calibration method based on connected vehicle technology[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(3): 117-131.
    [8] 韩萌. 面向交通监测的毫米波雷达与摄像头联合标定及关联方法研究[D]. 北京: 北方工业大学, 2022.

    HAN M. Research on joint calibration and correlation method of millimeter wave radar and camera for traffic monitoring[D]. Beijing: North China University of Technology, 2022. (in Chinese)
    [9] DU Y C, QIN B, ZHAO C, et al. A novel spatio-temporal synchronization method of roadside asynchronous MMW radar-camera for sensor fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22278-22289.
    [10] 赵祥模, 李娜, 王国强, 等. 基于GPS的公路视频影像信息系统[J]. 中国公路学报, 2006, 19(3): 87-91, 105.

    ZHAO X M, LI N, WANG G Q, et al. Highway video image information system based on GPS[J]. China Journal of Highway and Transport, 2006, 19(3): 87-91, 105. (in Chinese)
    [11] 廖飞钦, 马荣贵, 王朵, 等. 基于RANSAC的公路路面坑槽提取方法[J]. 计算机系统应用, 2022, 31(5): 230-237.

    LIAO F Q, MA R G, WANG D, et al. Road pothole extraction method based on RANSAC[J]. Computer Systems & Applications, 2022, 31(5): 230-237. (in Chinese)
    [12] RATHNASIRI N, SILVA N D, WIJESUNDARA J. State of the art in work zone safety: a systematic review[J]. International Journal of Transportation Science and Technology, 2023, 11(3): 12-28.
    [13] FHWA. Next generation simulation (NGSIM) vehicle trajectories and supporting data[EB/OL]. (2006-12-1)[2024-11-20]. https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
    [14] KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highd dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems[C]. 21st International Conference on Intelligent Transportation Systems, Hawaii, USA: IEEE, 2018.
    [15] 张敏, 陈嘉乐, 张驰, 等. 基于航拍数据的高速公路出口环圈匝道行车安全性评价方法[J]. 长安大学学报(自然科学版), 2024, 44(4): 108-118.

    ZHANG M, CHENG J L, ZAHNG C, et al. Aerial photography data-based method for evaluating traffic safety of highway exit loop ramps[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(4): 108-118. (in Chinese)
    [16] 林杰, 万里, 陈军, 等. 基于多源数据融合的高速公路桩号数字化研究及应用[J]. 武汉理工大学学报(信息与管理工程版), 2024, 46(2): 324-328, 334.

    LIN J, WAN L, CHENG J, et al. Research and application of expressway stake digitization based on multisource data fusion[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2024, 46(2): 324-328, 334. (in Chinese)
    [17] ZHANG W, SONG H, LIU L, et al. Vehicle localisation and deep model for automatic calibration of monocular camera in expressway scenes[J]. IET Intelligent Transport Systems, 2022, 16(4): 459-473.
    [18] 中华人民共和国国家质量监督检验检疫总局. 干线公路定位规则: GB/T 18731-2002[S]. 北京: 中国标准出版社, 2002.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Rules for locating highway of trunk: GB/T 18731-2002[S]. Beijing: Standards Press of China, 2002. (in Chinese)
    [19] LIU R, WANG J, ZHANG B. High definition map for automated driving: overview and analysis[J]. The Journal of Navigation, 2020, 73(2): 324-341.
    [20] LU Q, WANG R, YANG B, et al. Trajectory splicing[J]. Knowledge and Information Systems, 2020, 62(4): 1279-1312.
    [21] DERPANIS K G. Overview of the RANSAC algorithm[J]. Image Rochester NY, 2010, 4(1): 2-3.
    [22] LIU F, DENG Y. Determine the number of unknown targets in open world based on elbow method[J]. IEEE Transactions on Fuzzy Systems, 2020, 29(5): 986-995.
    [23] LI C M, WANG J H, FU T, et al. A novel adaptive calibration method for distributed roadside millimeter-wave radar pairs[C]. 27th International Conference on Intelligent Transportation Systems, Edmonton, Canada: IEEE, 2024.
    [24] WANG J H, FU T, SHANGGUAN Q Q. Wide-area vehicle trajectory data based on advanced tracking and trajectory splicing technologies: potentials in transportation research[J]. Accident Analysis & Prevention, 2023, 186: 107044.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  18
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-16
  • 网络出版日期:  2025-09-29

目录

    /

    返回文章
    返回