留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市自适应出行热点探测及区域划分方法

闫宇辰 汪语心 全威

闫宇辰, 汪语心, 全威. 城市自适应出行热点探测及区域划分方法[J]. 交通信息与安全, 2025, 43(2): 85-94. doi: 10.3963/j.jssn.1674-4861.2025.02.010
引用本文: 闫宇辰, 汪语心, 全威. 城市自适应出行热点探测及区域划分方法[J]. 交通信息与安全, 2025, 43(2): 85-94. doi: 10.3963/j.jssn.1674-4861.2025.02.010
YAN Yuchen, WANG Yuxin, QUAN Wei. Urban Adaptive Travel Hotspot Detection and Area Division Method[J]. Journal of Transport Information and Safety, 2025, 43(2): 85-94. doi: 10.3963/j.jssn.1674-4861.2025.02.010
Citation: YAN Yuchen, WANG Yuxin, QUAN Wei. Urban Adaptive Travel Hotspot Detection and Area Division Method[J]. Journal of Transport Information and Safety, 2025, 43(2): 85-94. doi: 10.3963/j.jssn.1674-4861.2025.02.010

城市自适应出行热点探测及区域划分方法

doi: 10.3963/j.jssn.1674-4861.2025.02.010
基金项目: 

国家自然科学基金项目 42171451

详细信息
    作者简介:

    闫宇辰(2000-),博士研究生. 研究方向:交通数据分析、智慧城市. E-mail: 22s032044@stu.hit.edu.cn

    通讯作者:

    全威(1980-),博士,副教授. 研究方向:交通信息工程及控制. E-mail: weiquan@hit.edu.cn

  • 中图分类号: U268.6

Urban Adaptive Travel Hotspot Detection and Area Division Method

  • 摘要: 针对固定带宽热点识别在多密度出行数据中的适应性不足,以及传统区域划分方法引发的空间异质性表达失真问题,本文提出了1种面向城市交通的自适应热点探测与动态区域划分方法。构建自适应出行密度估计模型,通过先导估计确定全局初始带宽,结合最大似然估计标定敏感性参数,并引入局部带宽修正系数和动态带宽调整机制,实现研究带宽的自动调节。开发多级热点识别技术,采用移动窗口极值检测与自然断裂分级相结合策略,构建出行热点评价体系。以热点为控制点生成泰森多边形作为基本分析单元,保持空间异质性特征,结合出行热度、莫兰指数等五类指标评估区域划分效果。以哈尔滨主城区出租车轨迹数据为样本进行实证,结果显示:较固定带宽方法,本方法热点识别数量提升2.1~6.7倍,区域热度差异标准差达572.8;面要素内点数据平均中心与重心距离为137.8 m,较传统栅格方法减少15.1%~74.3%,验证了区域划分的均质性优势;块金基台比降低至0.135,单元内部变异度减少39.6%,表明其能有效保留数据聚集特征并降低可塑性面积单元问题影响;自适应方法在研究区域内共得到了1 719个出行热点,在哈尔滨西站等区域精准定位路网交叉口热点,边界清晰且地理语义明确。研究结果为多密度出行数据分析提供了自适应框架,可支持出租车调度、需求预测等应用场景。

     

  • 图  1  研究框架

    Figure  1.  Research framework

    图  2  热点识别

    Figure  2.  Hotspot identification

    图  3  基于热点核心的区域划分方法

    Figure  3.  A zoning method based on the hotspot core

    图  4  哈尔滨市出行热点探测

    Figure  4.  Harbin travel hotspot detection

    图  5  热点区域划分结果

    Figure  5.  Adaptive hotspot area division results

    图  6  不同区域划分方案案例分析对比

    Figure  6.  Case studies and comparisons of different regional division schemes

    图  7  局部高出行密度区域基本单元划分与分级

    Figure  7.  Classification and classification of basic units in local high-density areas

    图  8  局部低出行密度区域基本单元划分与分级

    Figure  8.  Classification and classification of basic units in local low-density areas

    表  1  哈尔滨出租车数据描述

    Table  1.   Travel hotspots of Harbin at different grades

    等级 自适应带宽 较大带宽 中等带宽 较小带宽
    热点数量 占比/% 热点数量 占比/% 热点数量 占比/% 热点数量 占比/%
    564 32.81 176 69.02 602 72.53 8 234 77.16
    568 33.04 45 17.65 163 19.64 1 861 17.44
    406 23.61 26 10.20 53 6.39 489 4.58
    147 8.55 7 2.75 11 1.33 86 0.81
    34 1.98 1 0.39 1 0.12 1 0.01
    下载: 导出CSV

    表  2  全局莫兰指数

    Table  2.   Results of Global Moran's I

    区域划分方案 Moran's I 均值 方差 Z P
    自适应热点区域 0.338 765 -0.000 582 0.000 015 88.987 517 0.000 1
    10 m热点区域 0.411 725 -0.000 094 0.000 001 475.990 751 0.000 1
    300 m热点区域 0.635 711 -0.001 206 0.000 105 62.228 267 0.000 1
    600 m热点区域 0.517 628 -0.000 013 0.000 201 41.356 752 0.000 1
    200 m栅格 0.916 463 -0.000 008 0.000 004 452.466 257 0.000 1
    300 m栅格 0.893 831 -0.000 033 0.000 016 221.343 284 0.000 1
    600 m栅格 0.759 127 -0.000 285 0.000 144 63.177 174 0.000 1
    1000 m栅格 0.753 746 -0.000 779 0.000 397 37.869 035 0.000 1
    下载: 导出CSV

    表  3  不同区域划分方案下的热度与匀质性比较

    Table  3.   Comparison of heat and homogeneity under different division schemes

    区域划分方案 区域数量 热度最小值 热度最大值 热度平均值 区域热度差异 平均距离/m 块金基台比
    自适应热点区域 1 719 0 5 554.7 409.8 572.8 137.8 0.135
    10 m热点区域 10 671 0 81.0 2.8 3.9 198.1 0.282
    300 m热点区域 830 0 24.1 1.44 2.6 206.4 0.194
    600 m热点区域 255 0 107.5 5.9 6.5 337.2 0.217
    200 m栅格 37 310 0 1 479.4 70.5 118.2 162.3 0.236
    300 m栅格 16 714 0 1 904.7 106.7 176.1 226.9 0.209
    600 m栅格 4 209 0 3 948.1 179.2 211.9 384.9 0.224
    1000 m栅格 1 476 0 4 812.3 477.3 247.1 536.1 0.308
    下载: 导出CSV
  • [1] 李之红, 申天宇, 文琰杰, 等. 基于混合机器学习框架的网约车订单需求预测与异常点识别[J]. 交通信息与安全, 2023, 41(3): 157-165, 174. doi: 10.3963/jjssn.1674-4861.2023.03.017

    LI Z H, SHEN T Y, WEN Y J, et al. Order demand prediction and anomaly-point identification for online car-hailing orders based on hybrid machine learning framework[J]. Journal of Transport Information and Safety, 2023, 41(3): 157-165, 174. (in Chinese) doi: 10.3963/jjssn.1674-4861.2023.03.017
    [2] LIANG X, BAKER J, DELLAPOSTA D, et al. Is your neighbor your friend? Scan methods for spatial social network hotspot detection[J]. Transactions in GIS, 2023, 27(3): 607-625. doi: 10.1111/tgis.13050
    [3] ZHENG H, GAO S, CAI C, et al. A rapid density method for taxi passengers hot spot recognition and visualization based on DBSCAN+[J]. Scientific Reports, 2021, 11(1): 1-13. doi: 10.1038/s41598-020-79139-8
    [4] 龙雪琴, 周萌, 赵欢, 等. 基于网络核密度的网约车上下客热点识别[J]. 交通运输系统工程与信息, 2021, 21(3): 86-93.

    LONG X Q, ZHOU M, ZHAO H, et al. Passengers' hot spots identification of online car-hailing based on network kernel density[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 86-93. (in Chinese)
    [5] ZHANG G, XU J. Multi-GPU-Parallel and tile-based kernel density estimation for large-scale spatial point pattern analysis[J]. ISPRS International Journal of Geo-Information, 2023, 12(2): 1-20.
    [6] OU Y, KIM E, LIU X, et al. Delineating functional regions from road networks: the case of South Korea[J]. Environment and Planning B: Urban Analytics and City Science, 2023, 50(6): 1677-1694. doi: 10.1177/23998083231172198
    [7] ZHANG K, LIU Z, ZHENG L. Short-term prediction of passenger demand in multi-zone level: temporal convolutional neural network with multi-Task learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1480-1490. doi: 10.1109/TITS.2019.2909571
    [8] COMBER A, HARRIS P, BRATKOVA K, et al. Handling the MAUP: methods for identifying appropriate scales of aggregation based on measures on spatial and non-spatial variance[J]. AGILE: GIScience Series, 2022, 30(3): 1-5.
    [9] GAO Y, LIAO Y. Urban tourism traffic analysis zone division based on floating car data[J]. Promet-Traffic&Transportation, 2023, 35(3): 395-406.
    [10] LI C, ZHENG L, JIA N. Network-wide ride-sourcing passenger demand origin-destination matrix prediction with a generative adversarial network[J]. Transportmetrica A: Transport Science, 2022, 20(1): 1-28.
    [11] YANG B, TIAN Y, WANG J, et al. How to improve urban transportation planning in big data era? A practice in the study of traffic analysis zone delineation[J]. Transport Policy, 2022, 127: 1-14. doi: 10.1016/j.tranpol.2022.08.002
    [12] 薛晴婉, 瞿麦青, 彭怀军, 等. 基于多目标蚁群算法的共享单车调度优化方法[J]. 交通信息与安全, 2024, 42(2): 124-135. doi: 10.3963/jssn.1674-4861.2024.02.013

    XUE Q W, QU M Q, PENG H J, et al. A scheduling optimization method of shared bicycles based on a multi-objective ant colony algorithm[J]. Journal of Transport Information and Safety, 2024, 42(2): 124-135. (in Chinese) doi: 10.3963/jssn.1674-4861.2024.02.013
    [13] LUO H, CAI J, ZHANG K, et al. A multi-task deep learning model for short-term taxi demand forecasting considering spatiotemporal dependences[J]. Journal of Traffic and Transportation Engineering(English Edition), 2021, 8(1): 83-94. doi: 10.1016/j.jtte.2019.07.002
    [14] 陈启香, 吕斌, 李显林. 站域建成环境对出租车-地铁组合出行的非线性影响[J]. 交通运输工程学报, 2024, 24(5): 285-300.

    CHEN Q X, LYU B, LI X L. Nonlinear effect of station-area built environment on taxi-metro combined travel[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 285-300. (in Chinese)
    [15] CESARIO E, UCHUBILO P I, VINCI A, et al. Multi-density urban hotspots detection in smart cities: a data-driven approach and experiments[J]. Pervasive and Mobile Computing, 2022, 86(1): 1-13.
    [16] 王梓蒙, 刘艳芳, 罗璇, 等. 基于多源数据的城市活力与建成环境非线性关系研究——以双休日武汉市主城区为例[J]. 地理科学进展, 2023, 42(4): 716-729. (in Chinese)

    WANG Z M, LIU Y F, LUO X, et al. Nonlinear relationship between urban vitality and the built environment based on multi-source data: a case study of the main urban area of Wuhan city at the weekend[J]. Progress in Geography, 2023, 42(4): 716-729. (in Chinese)
    [17] TANG J, HU J, WANG Y, et al. Estimating hotspots using a Gaussian mixture model from large-scale taxi GPS trace data[J]. Transportation Safety and Environment, 2019, 1(2): 145-153. doi: 10.1093/tse/tdz006
    [18] ZHANG G, ZHU A X, HUANG Q. A GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data[J]. International Journal of Geographical Information Science, 2017, 31(10): 2068-2097. doi: 10.1080/13658816.2017.1324975
    [19] JAVANMARD R, LEE J, KIM J, et al. The impacts of the modifiable areal unit problem(MAUP)on social equity analysis of public transit reliability[J]. Journal of Transport Geography, 2023, 106(1): 1-13.
    [20] 刘瑜, 汪珂丽, 邢潇月, 等. 地理分析中的空间效应[J]. 地理学报, 2023, 78(3): 517-531.

    LIU Y, WANG K L, XING X Y, et al. On spatial effects in geographical analysis[J]. Acta Geographica Sinica, 2023, 78(3): 517-531. (in Chinese)
    [21] 全威, 孙超. 基于热点探测的城市区域公交可达性研究[J]. 交通运输系统工程与信息, 2020, 20(2): 231-236.

    QUAN W, SUN C. Bus accessibility in urban areas based on hot spot detection[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 231-236. (in Chinese)
    [22] YAN Y, QUAN W, WANG H. A data-driven adaptive geospatial hotspot detection approach in smart cities[J]. Transactions in GIS, 2024, 28(2): 303-325. doi: 10.1111/tgis.13137
    [23] 葛浩菁, 吕远, 焦朋朋. 基于信令数据的中型城市通勤公交站点优化方法[J]. 交通信息与安全, 2024, 42(1): 142-149. doi: 10.3963/jssn.1674-4861.2024.01.016

    GE H J, LYU Y, JIAO P P. Deployment of bus stop for commuters in medium-sized cities based on signaling data[J]. Journal of Transport Information and Safety, 2024, 42(1): 142-149. (in Chinese) doi: 10.3963/jssn.1674-4861.2024.01.016
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  22
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-06
  • 网络出版日期:  2025-09-29

目录

    /

    返回文章
    返回