A Method for Dynamic Coupling Coordination of High-speed Railway Node-line Passing Capacity Based on SEM
-
摘要: 针对影响高铁点线系统通过能力动态因素众多且各动态因素间影响关系复杂、难以量化动态因素权重的问题,研究了基于结构方程模型(structural equation modeling,SEM)的高铁点线系统通过能力动态耦合协调方法。为探究高铁点线系统通过能力动态因素间的复杂影响关系,将影响高铁点线系统通过能力的动态因素分为点系统、线系统、运输组织、作业时间、延误及早点子系统,构建PLE-SEM的高铁点线系统通过能力动态协调模型。此基础上,引入上海西站—上海站区段的高铁点线系统数据对模型进行测量模型和结构模型检定,验证模型的有效性、科学性和拟合优度,揭示该区段高铁通过能力各子系统间的影响关系和影响方向,得到各子系统中各指标的权重,找出通过能力瓶颈。运用耦合协调度模型计算该区段点线通过能力系统和各子系统耦合协调度,识别关键环节。结果表明:①此模型方法适用于探究高铁点线系统通过能力动态因素间的复杂影响关系,能够识别判断出高铁点线系统通过能力各子系统中的重要动态因素,且能量化影响关系,指明影响方向;②经过实例模型计算,所提方法确定出各个子系统中的关键因素,并且能够反映因素之间的动态耦合关系,影响关系总计存在13条直接影响路径和9条间接影响路径,将各子系统间的影响可视化,可以依据所得结果选取合理计算能力参数及取值范围。Abstract: This study addresses the challenges posed by multiple dynamic factors affecting the passing capacity of high-speed railway node-line systems, particularly focusing on the complex interrelationships among these factors and the difficulty in quantifying their weights. A dynamic coupling coordination method based on structural equation modeling (SEM) is proposed to resolve these issues. The dynamic factors influencing high-speed railway node-line passing capacity are categorized into six subsystems: node system, line system, transportation organization, operational time, delays, and early arrivals. A PLE-SEM-based dynamic coordination model is subsequently constructed to analyze these subsystems. Operational data from the Shanghai West Station-Shanghai Station section are utilized to verify the model's validity, scientific rigor, and goodness-of-fit through measurement model and structural model validation. This process identifies interaction mechanisms, directional influences, and indicator weights across subsystems while detecting capacity bottlenecks. A coupling coordination degree model is further applied to assess system-level and subsystem-level coordination states, enabling the identification of key links. The results demonstrate: ①this model method is applicable for investigating the complex influence relationships among dynamic factors affecting the throughput capacity of high-speed railway node-line systems. It enables the identification of critical dynamic factors within subsystems of the system's throughput capacity, quantifies the influence relationships, and specifies the direction of impacts. ②Through comprehensive factor analysis and case study calculations, the proposed method effectively identifies key factors and reveals dynamic coupling relationships among them. A total of 13 direct influence paths and 9 indirect influence paths are established between subsystems, visualizing their interconnections. These results provide a basis for selecting appropriate capacity calculation parameters in practical applications.
-
表 1 潜变量和观测变量表
Table 1. Table of latent and observed variables
潜变量 形态 观测变量 点系统(SS) 形成性 ss_1:上海站不同作业类型列车比 ss_2:上海西站不同作业类型列车比 ss_3:列车出发正点率 ss_4:旅客列车开行对数 线系统(LS) 形成性 1s_1:不同运行速度等级列车比 1s_2:列车发到比 1s_3:列车运行正点率 运输组织(TO) 形成性 to_1:停站基本扣除系数 to_2:列车运行图有效时间利用率 to_3:线间缓冲时间 to_4:流量分布 作业时间(OT) 形成性 to_1:发车占用时间 ot_2:接车占用时间 ot_3:追踪间隔时间 ot_4:额外占用时间 延误(DA) 反映性 da_1:出发晚点列车数及晚点率 da_2:到达晚点列车数及晚点率 da_3:平均初始晚点时间 da_4:平均初始晚点时间 早点(AE) 反映性 ae_1:平均初始早点时间 ae_2:平均连带早点时间 表 2 测量模型参数表
Table 2. Measurement Model Parameter Table
变量 形态 指标 因素负荷量/权重 Cronbach'$ \alpha $ CR值/VIF AVE值$ / t $值 SS 形成性 ss_1 0.687 6.453 3.841 ss_2 0.787 1.084 10.667 ss_3 0.602 1.256 6.976 ss_4 0.691 6.772 3.632 LS 形成性 ls_1 0.572 1.010 6.668 ls_2 0.559 1.027 9.060 ls_3 0.482 1.018 7.026 TO 形成性 to_1 0.478 1.237 6.456 to_2 0.440 1.094 8.061 to_3 0.424 1.090 7.219 to_4 0.489 1.249 6.187 OT 形成性 ot_1 0.589 1.111 5.904 ot_2 0.638 1.048 7.859 ot_3 0.390 1.034 4.374 ot_4 0.353 1.063 3.785 DA 反映性 da_1 0.955 0.977 0.914 da_2 0.960 da_3 0.964 0.969 da_4 0.946 AE 反映性 ae_1 0.984 0.970 0.985 0.971 ae_2 0.987 注:本表中因素负荷量、CR值和AVE值为反映性模型参数,权重、VIF和t值为形成性模型参数。 表 3 假设检验结果表
Table 3. Hypothesis test results table
假设 路径 路径系数 t值 P值 检验结果 H1 SS $ \rightarrow $ LS 0.388 3.514 0.000 接受 H2 LS $ \rightarrow $ TO 0.487 2.963 0.003 接受 H3 $ \mathrm{SS} \rightarrow \mathrm{TO} $ 0.226 2.167 0.030 接受 H4 OT $ \rightarrow $ SS -0.503 6.155 0.000 接受 H5 OT $ \rightarrow $ LS -0.392 4.779 0.000 接受 H6 OT $ \rightarrow $ TO -0.067 0.783 0.434 拒绝 H7 $ \mathrm{DA} \rightarrow \mathrm{SS} $ -0.299 3.799 0.000 接受 H8 DA $ \rightarrow $ LS -0.163 2.776 0.006 接受 H9 DA $ \rightarrow $ OT 0.344 3.448 0.001 接受 H10 $ \mathrm{DA} \rightarrow \mathrm{TO} $ -0.167 2.428 0.015 接受 H11 $ \mathrm{AE} \rightarrow \mathrm{SS} $ -0.328 4.352 0.000 接受 H12 $ \mathrm{AE} \rightarrow \mathrm{LS} $ -0.184 2.668 0.008 接受 H13 $ \mathrm{AE} \rightarrow \mathrm{TO} $ -0.153 2.118 0.034 接受 H14 AE $ \rightarrow $ OT 0.445 4.493 0.000 接受 表 4 间接路径表
Table 4. Indirectpath table
路径 路径系数 t值 P值 路径 路径系数 $ t $值 $ P $值 AE-OT-SS -0.224 3.399 0.001 DA-OT-SS -0.173 2.903 0.004 AE-SS-LS -0.127 3.256 0.001 DA-SS-LS -0.116 2.521 0.012 OT-LS-TO -0.191 2.633 0.008 SS-LS-TO 0.189 2.215 0.027 AE-OT-LS -0.175 3.176 0.002 DA-OT-LS -0.135 2.952 0.003 OT-SS-LS -0.195 2.627 0.009 表 5 耦合协调度模型原始数据表
Table 5. Original data table of coupling coordination model
子系统 指标 组间权重 组内权重 子系统标准化值 指标标准化值 SS ss_1 0.15 0.24 0.697 0.687 ss_2 0.28 0.787 ss_3 0.22 0.602 ss_4 0.26 0.691 LS 1s_1 0.12 0.35 0.540 0.572 1s_2 0.35 0.559 1s_3 0.30 0.482 TO to_1 0.26 0.459 0.478 to_2 0.24 0.440 to_3 0.23 0.424 to_4 0.27 0.489 OT ot_1 0.22 0.30 0.522 0.589 ot_2 0.32 0.638 ot_3 0.20 0.390 ot_4 0.18 0.353 DA da_1 0.24 0.25 0.954 0.955 da_2 0.25 0.960 da_3 0.25 0.964 da_4 0.25 0.946 AE ae_1 0.27 0.5 0.988 0.987 ae_2 0.5 0.984 表 6 子系统耦合协调度计算结果
Table 6. Calculation results of subsystem coupling coordination degree
指标 SS子系统 LS子系统 TO子系统 OT子系统 DA子系统 AE子系统 耦合度$ C $ 0.996 0.997 0.706 0.685 0.707 0.990 综合评价指数$ T $ 0.697 0.540 0.459 0.522 0.954 0.986 耦合协调度$ D $ 0.833 0.734 0.569 0.598 0.821 0.988 表 7 耦合协调度等级划分表
Table 7. Coupling Coordination Level Classification Table
耦合协调度D范围 协调等级 等级划分 耦合协调度D范围 协调等级 等级划分 $ 0.00 \sim 0.09 $ 1 极度失调 $ 0.50 \sim 0.59 $ 6 勉强失调 $ 0.10 \sim 0.19 $ 2 严重失调 $ 0.60 \sim 0.69 $ 7 初级失调 $ 0.20 \sim 0.29 $ 3 中度失调 $ 0.70 \sim 0.79 $ 8 中级协调 $ 0.30 \sim 0.39 $ 4 轻度失调 $ 0.80 \sim 0.89 $ 9 良好协调 $ 0.40 \sim 0.49 $ 5 濒临失调 $ 0.90 \sim 1.00 $ 10 优质协调 -
[1] 王宇强, 魏王光, 林枫. 成网条件下基于运行图铺画的高速铁路通过能力计算研究[J]. 铁道学报, 2022, 44(10): 1-8.WANG Y Q, WEI W G, LIN F. Research on capacity calculation of high speedrailway based on running diagram layout under networked conditions[J]. Journal of Railway, 2022, 44 (10): 1-8. (in Chinese) [2] WIDYASTUTI H, BUDHI WS. Railway capacity analysis using Indonesian method and UIC code 405 method[J]. IOP Conference Series: Materials Science and Engineering, 2020, 930(1): 12010-12059. doi: 10.1088/1757-899X/930/1/012010 [3] WEIK N, WARG J, JOHANSSON I, et al. Extending UIC 406-based capacity analysis new approaches for railway nodes and network effects[J]. Journal of Rail Transport Planning & Management, 2020, 15: 100199. [4] KHOSHROO A, ABHARI RS. Railway line capacity calculation cased on UIC 405 method[J]. Transportation Research Procedia 2015, 10: 100-109. [5] 李和壁, 田长海, 张守帅, 等. 基于改进Rotor模型的客货共线铁路通过能力计算方法[J]. 中国铁道科学, 2021, 42(3): 144-155.LI H B, TIAN C H, ZHANG S S, et al. Calculation method for capacity of mixed passenger and freight railway based on improved Rotor model[J]. China Railway Science, 2021, 42 (3): 144-155. (in Chinese) [6] 尹铮. 基于扣除系数法计算高速铁路通过能力的不确定性分析[D]. 成都: 西南交通大学, 2021.YIN Z. Uncertainty analysis of high-speed railway capacity calculation based on deduction coefficient method[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese) [7] LIAO Z W, LI H Y, MIAO, J R, et al. Railway capacity estimation considering vehicle circulation: integrated timetable and vehicles scheduling on hybrid timespace networks[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102961. doi: 10.1016/j.trc.2020.102961 [8] KIANINEJADOSHAH A, RICCI S. Comparative application of analytical and simulation methods for the combined railway nodes-lines capacity assessment[J]. Transportation Research Procedia, 2021, 55: 103-109. doi: 10.1016/j.trpro.2021.06.011 [9] JENSEN L W, LANDEX A, NIELSEN O A, et al. Strategicassessment of capacity consumption in railway networks: framework and model[J]. Transportation Research Part C: Emerging Technologies, 2017, 74: 126-149. doi: 10.1016/j.trc.2016.10.013 [10] 寇伟华, 钱力, 吴文胜, 等. 基于多品种流网络的高铁枢纽站站改期间多态理论通过能力影响分析[J]. 铁道运输与经济, 2023, 45(3): 84-93.KOU W H, QIAN L, WU W S, et al. Multi state theory based on multivariety flow network for high-speed rail hub station renovation period through capacity impact analysis[J]. Railway Transportation and Economics, 2023, 45(3): 84-93. (in Chinese) [11] 刘佩. 基于车站间隔时间精细研究的高速铁路通过能力计算与加强[D]. 北京: 北京交通大学, 2019.LIU P. Calculation and enhancement of high speedrailway capacity based on fine research on station interval time[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese) [12] 王宇强, 方波, 魏玉光, 等. 基于点线一体化的高速铁路通过能力计算研究[J]. 铁道学报, 2020, 42(9): 1-9.WANG Y Q, FANG B, WEI Y G, et al. Capacitycalculation of high-speed railway basedon stationsection integration[J]. Journal of the China Railway Society, 2020, 42(9): 1-9. (in Chinese) [13] 陈晓竹, 曾诚. 高速铁路车站-区间能力协调性的重要影响因素分析[J]. 交通运输工程与信息学报, 2014, 12(2): 65-69.CHEN X Z, ZENG C. Analysis of important influencing factors on thecoordination of high-speed railway station section capacity[J]. Journal of Transportation Engineering and Information Technology, 2014, 12(2): 65-69. (in Chinese) [14] 王靖禹, 赵寒, 王军荣. 高速铁路通过能力影响因素递阶结构分析[J]. 科技创新导报, 2015, 12(19): 50-51.WANG J Y, ZHAO H, WANG J R. Hierarchical structure analysis of factors affecting the capacity of high-speed railways[J]. Science and Technology Innovation Report, 2015, 12(19): 50-51. (in Chinese) [15] 刘嘉河. 高速铁路通过能力计算和动态指标评价研究[D]. 成都: 西南交通大学, 2018.LIU J H. Research on capacity calculation and dynamic index evaluation of high speedrailway[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese) [16] 毛保华, 秦作睿. 运输系统点线能力协调模型的研究[J]. 铁道学报, 1996(增刊1): 97-101.MAO B H, QIN Z R. Research on coordination model of point line capacity in transportation system[J]. Journal of Railway, 1996(S1): 97-101. (in Chinese) [17] 陈韬, 谢恩雨, 邱爽, 等. 高铁枢纽站点线能力协调评估仿真研究[J]. 计算机仿真, 2022, 39(12): 154-159.CHEN T, XIE E Y, QIU S, et al. Simulation study on coordination evaluation of high speedrailway hub station line capacity[J]. Computer Simulation, 2022, 39(12): 154-159. (in Chinese) [18] 殷洁. 高速铁路点线系统能力协调性分析研究[D]. 兰州: 兰州交通大学, 2019.YIN J. Analysis and research on coordination capability of high speedrailway point line system[D]. Lanzhou: Lanzhou Jiaotong University, 2019. (in Chinese) [19] 林枫, 刘敏, 李博, 等. 高速铁路区段通过能力计算与敏感度分析[J]. 铁道运输与经济, 2021, 43(12): 16-20.LIN F, LIU M, LI B, et al. Capacity calculation and sensitivity analysis of high speed railway sections[J]. Railway Transportation and Economics, 2021, 43(12): 16-20. (in Chinese) [20] 鄢云珠, 傅忠宁, 岳金田. 车辆怠速起停系统使用意愿结构方程模型及影响因素分析[J]. 交通信息与安全, 2023, 41 (6): 161-170. doi: 10.3963/j.jssn.1674-4861.2023.06.018YAN Y Z, FU Z N, YUE J T. Structural equation modeling of vehicle idle start stop system usage intention and analysis of influencing factors[J]. Journal of Transpor Information and Safety, 2023, 41(6): 161-170. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.06.018 [21] 李晓娟. 高速铁路通过能力计算及可靠性评估方法研究[D]. 北京: 北京交通大学, 2016.LI X J. Research on calculation and reliability evaluation methods for high speedrailway capacity[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese) [22] 邓珺文. 高速铁路车站通过能力适应性分析及优化策略[D]. 成都: 西南交通大学, 2017.DENG J W. Analysis and optimization strategy of capacity adaptability of high speedrailway stations[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese) [23] 谢恩雨. 基于串并联型点线结构的高铁点线能力协调仿真研究[D]. 成都: 西南交通大学, 2022.XIE E Y. Research on coordination simulation of high speed railway point line capability based on series parallel point line structure[D]. Chengdu: Southwest Jiaotong University, 2022. (in Chinese) [24] 杨肇夏. 列车运行图动态性能及其指标体系的研究[J]. 铁道学报, 1993(4): 46-56.YANG ZX. Research on the dynamic performance and indicator system of train operation diagram[J]. Journal of Railway, 1993(4): 46-56. (in Chinese) -