留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Transformer-TCN-GRU的场面滑行轨迹预测模型

王兴隆 李国祥 张钊 叶可 苏婷 葛京

王兴隆, 李国祥, 张钊, 叶可, 苏婷, 葛京. 基于Transformer-TCN-GRU的场面滑行轨迹预测模型[J]. 交通信息与安全, 2025, 43(2): 44-53. doi: 10.3963/j.jssn.1674-4861.2025.02.006
引用本文: 王兴隆, 李国祥, 张钊, 叶可, 苏婷, 葛京. 基于Transformer-TCN-GRU的场面滑行轨迹预测模型[J]. 交通信息与安全, 2025, 43(2): 44-53. doi: 10.3963/j.jssn.1674-4861.2025.02.006
WANG Xinglong, LI Guoxiang, ZHANG Zhao, YE Ke, SU Ting, GE Jing. A Model for Aircraft Surface Taxiing Trajectory Prediction Base on Transformer-TCN-GRU[J]. Journal of Transport Information and Safety, 2025, 43(2): 44-53. doi: 10.3963/j.jssn.1674-4861.2025.02.006
Citation: WANG Xinglong, LI Guoxiang, ZHANG Zhao, YE Ke, SU Ting, GE Jing. A Model for Aircraft Surface Taxiing Trajectory Prediction Base on Transformer-TCN-GRU[J]. Journal of Transport Information and Safety, 2025, 43(2): 44-53. doi: 10.3963/j.jssn.1674-4861.2025.02.006

基于Transformer-TCN-GRU的场面滑行轨迹预测模型

doi: 10.3963/j.jssn.1674-4861.2025.02.006
基金项目: 

天津市教育委员会自然科学重点项目 2020ZD01

详细信息
    作者简介:

    王兴隆(1979—),硕士,研究员. 研究方向:空域运行安全、空中交通流量管理等. E-mail:xinglong1979@163.com

    通讯作者:

    张钊(1988—),博士,讲师. 研究方向:模式识别. E-mail:zhangzhao0807@sina.com

  • 中图分类号: V351.11

A Model for Aircraft Surface Taxiing Trajectory Prediction Base on Transformer-TCN-GRU

  • 摘要: 对于航空器滑行轨迹预测,现有方法在实时推算中等时间尺度内的未来位置精度较低,为进一步提高中等时间尺度内轨迹预测的精度,并保证实时预测的高效性,将Transformer网络、交叉注意力机制、时间卷积网络(temporal convolutional network,TCN)与门控循环单元(gated recurrent unit,GRU)相结合,构建1种输出多条候选轨迹的地面滑行轨迹预测模型。引入Transformer编码器捕捉航空器历史轨迹数据中的时间依赖性和运动状态,获取轨迹特征序列的全局特征表示;结合机场矢量地图和管制系统给出的滑行路径指令计算航空器在未来计划的滑行路径坐标序列,使用交叉注意力机制,以轨迹序列的全局特征作为查询,关注路径坐标序列中对未来滑行影响最大的位置,将融合路径特征后的轨迹全局特征映射为多种模态,对应每条候选轨迹的特征;TCN-GRU轨迹解码器对每种模态的轨迹特征进行解码,捕捉轨迹序列中的长期时间依赖,输出多条预测轨迹及其概率。以国内某大型机场航空器真实滑行轨迹进行验证,未来8 s的位置轨迹预测最小平均位移误差(minimum average displacement error,minADE)为1.932 m,最小最终位移误差(minimum final displacement error,minFDE)为1.811 m,相较于单一的GRU、TCN模型,minADE降低14.10%、16.62%,minFDE降低30.88%、34.72%,测试样本平均耗时17.70 ms,可以准确、快速预测滑行轨迹,有利于保障飞行区的安全运行。

     

  • 图  1  场面滑行轨迹预测模型整体架构

    Figure  1.  Overall architecture of surface taxiing trajectory prediction model

    图  2  轨迹解码器数据维度变化

    Figure  2.  Trajectory decoder data dimension change

    图  3  机场矢量地图

    Figure  3.  Airport vector map

    图  4  不同预测时长的预测结果

    Figure  4.  Prediction results for different prediction time horizons

    图  5  不同数量预测轨迹的预测结果Fig

    Figure  5.  Prediction results for different numbers of predicted trajectories

    图  6  测试样例可视化

    Figure  6.  Test example visualization

    表  1  对比实验结果

    Table  1.   Comparative experimental results

    模型 minADE(N=6) minFDE(N=6) ADE FDE
    CVM 5.725 8.583
    Conv_s2s 2.672 3.537 3.771 6.376
    TCN 2.317 2.774 3.540 5.916
    GRU 2.249 2.620 3.480 5.773
    TF 4.087 6.732
    WIMP 2.094 2.187 2.828 4.108
    Our 1.932 1.811 2.596 3.717
    下载: 导出CSV

    表  2  消融实验结果

    Table  2.   Ablation study results

    模型 minADE(N=6) minFDE(N=6) ADE FDE
    Our(0) 2.256 2.653 3.399 5.632
    Our(1) 1.961 1.882 2.619 3.784
    Our(2) 1.940 1.863 2.619 3.874
    Our(3) 1.945 1.826 2.615 3.727
    Our 1.932 1.811 2.596 3.717
    下载: 导出CSV

    表  3  不同预测时长实验的误差和平均耗时

    Table  3.   Errors and average runtime of experiments with different prediction time horizons

    预测时长/s minADE(N=6) minFDE(N=6) 平均耗时/ms
    3 1.071 1.185 16.89
    5 1.448 1.535 17.03
    8 1.932 1.811 17.70
    11 2.312 2.201 17.68
    15 2.797 3.455 17.58
    下载: 导出CSV

    表  4  不同数量预测轨迹实验的误差和平均耗时

    Table  4.   Errors and average runtime of experiments with different numbers of predicted trajectories

    预测轨迹数量 minADE(N=6) minFDE(N=6) 平均耗时/ms
    1 2.596 3.717 17.70
    3 2.075 2.353 17.61
    6 1.932 1.811 17.70
    9 1.871 1.593 17.79
    下载: 导出CSV

    表  5  不同机型在转弯位置的预测结果

    Table  5.   Prediction results of different aircraft types at turning positions

    航空器机型 minADE(N=6) minFDE(N=6)
    Wide_Body 2.615 2.636
    Narrow_Body 2.363 2.536
    Regional_Jet 2.627 2.619
    NAN 2.385 2.406
    738 2.449 2.628
    320 2.421 2.541
    320NEO 2.302 2.491
    321 2.157 2.421
    319 2.081 2.247
    737MAX8 2.484 2.831
    下载: 导出CSV
  • [1] 廖超伟. 航空器跑道滑行轨迹预测方法研究[J]. 舰船电子工程, 2015, 35(8): 127-129, 166.

    LIAO C W. Prediction method of aircraft runway slide trajectory[J]. Ship Electronic Engineering, 2015, 35 (8) : 127-129, 166. (in Chinese)
    [2] 周龙. 基于4D轨迹的航空器地面滑行动态路径规划及仿真系统研究[D]. 南京: 南京航空航天大学, 2015.

    ZHOU L. Research on system of dynamic route planning and simulation for taxiing aircraft based on 4D trajectory[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [3] ZHANG X, YU W. Research on the application of kalman filter algorithm in aircraft trajectory analysis[C]. IEEE 7th International Conference on Intelligent Computing and Signal Processing, Xi'an: IEEE, 2022.
    [4] 吕波, 王超. 改进的扩展卡尔曼滤波在航空器4D航迹预测算法中的应用[J]. 计算机应用, 2021, 41(增刊1): 277-282.

    LYU B, WANG C. Application of improved extended kalman filtering in aircraft 4D trajectory prediction algorithm[J]. Journal of Computer Applications, 2021, 41(S1): 277-282. (in Chinese)
    [5] 陈明强, 傅嘉赟. 基于无迹卡尔曼滤波的飞行航迹预测方法研究[J]. 计算机仿真, 2021, 38(6): 27-30, 36.

    CHENG M Q, FU J Y. Flight track prediction method based on unscented kalman filter[J]. Computer Simulation, 2021, 38 (6): 27-30, 36. (in Chinese)
    [6] 王新, 杨任农, 左家亮, 等. 基于HPSO-TPFENN的目标机轨迹预测[J]. 西北工业大学学报, 2019, 37(3): 612-620.

    WANG X, YANG R N, ZUO J L, et al. Trajectory prediction of target aircraft based on HPSO-TPFENN neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37 (3): 612-620. (in Chinese)
    [7] MA L, TIAN S. A hybrid CNN-LSTM model for aircraft 4D trajectoryprediction[J]. IEEEAccess, 2020, (8): 134668-134680.
    [8] SHI Z Y, XU M, PAN Q. 4-D flight trajectory prediction with constrained LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(11): 7242-7255.
    [9] ZENG W L, QUAN Z B, ZHAO Z Y, et al. A deep learning approach for aircraft trajectory prediction in terminal airspace[J]. IEEE Access, 2020, (8): 151250-151266.
    [10] MA Z M, YAO M F, HONG T, et al. Aircraft surface trajectory prediction method based on LSTM with attenuated memory window[J]. Journal of Physics: Conference Series, 2019, 1215(1): 012003. doi: 10.1088/1742-6596/1215/1/012003
    [11] 杨春伟, 刘炳琪, 王继平, 等. 基于注意力机制的高超声速飞行器LSTM智能轨迹预测[J]. 兵工学报, 2022, 43(增刊2): 78-86.

    YANG C W, LIU B Q, WANG J P, et al. LSTM intelligent trajectory prediction for hypersonic vehicles based on attention mechanism[J]. Acta Armamentarii, 2022, 43(S2): 78-86. (in Chinese)
    [12] ZHANG X G, ZHONG S Q, MAHADEVAN S. Airport surface movement prediction and safety assessment with spa-tial-temporal graph convolutional neural network[J]. Transportation Research Part C: Emerging Technologies, 2022, 144: 103873. doi: 10.1016/j.trc.2022.103873
    [13] 刘雨生, 汤新民, 任宣铭. 基于注意力机制的GRU-IKF场面滑行轨迹预测模型[J]. 北京航空航天大学学报, 2025, 51 (3): 1028-1036.

    LIU Y S, TANG X M, REN X M. Prediction of aircraft surface trajectory based on the GRU-IKF model with attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(3): 1028-1036. (in Chinese)
    [14] 王兴隆, 许晏丰. 基于AM-LSTM的飞行区航空器滑行轨迹预测与冲突识别[J]. 中国安全科学学报, 2024, 34(1): 116-124.

    WANG X L, XU Y F. Aircraft taxiing trajectory prediction and conflict risk identification in airfield area based on AM-LSTM[J]. China Safety Science Journal, 2024, 34(1): 116-124. (in Chinese)
    [15] 殷萌暄, 胡明华, 尹嘉男, 等. 基于多元嵌入特征的航空器场面滑行轨迹预测[J]. 航空计算技术, 2024, 54(5): 58-63.

    YIN M X, HU M H, YIN J N, et al. Aircraft taxiing trajectory prediction based on multi-embedding features[J]. Aeronautical Computing Technique, 2024, 54(5): 58-63. (in Chinese)
    [16] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2021-06)[2024-11-04]. https://arxiv.org/abs/2010.11929.
    [17] 中国民用航空局. 民用机场飞行区技术标准: MH 5001-2021[S]. 北京: 中国民航出版社, 2021.

    Civil Aviation Administration of China. Technical standards for airfield area of civil airports: MH 5001-2021[S]. Beijing: China Civil Aviation Publishing House, 2021. (in Chinese)
    [18] ZHOU Z K, YE L Y, WANG J P, et al. Hivt: hierarchical vector transformer for multi-agent motion prediction[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA: IEEE, 2022.
    [19] GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]. International Conference on Machine Learning, Sydney, Australia: PMLR, 2017.
    [20] BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-04)[2024-11-04]. https://arxiv.org/abs/1803.01271
    [21] GIULIARI F, HASAN I, CRISTANI M, et al. Transformer networks for trajectory forecasting[C]. 25th International Conference on Pattern Recognition, Milan, Italy: IEEE, 2021.
    [22] KHANDELWAL S, QI W, SINGH J, et al. What-if motion prediction for autonomous driving[EB/OL]. (2020-08)[2024-11-04]. https://arxiv.org/abs/2008.10587.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  26
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-05
  • 网络出版日期:  2025-09-29

目录

    /

    返回文章
    返回