留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PEW-YOLOv8的内河船舶目标检测方法

曹智远 马勇 成雪夫 胡文韬

曹智远, 马勇, 成雪夫, 胡文韬. 基于PEW-YOLOv8的内河船舶目标检测方法[J]. 交通信息与安全, 2025, 43(2): 36-43. doi: 10.3963/j.jssn.1674-4861.2025.02.005
引用本文: 曹智远, 马勇, 成雪夫, 胡文韬. 基于PEW-YOLOv8的内河船舶目标检测方法[J]. 交通信息与安全, 2025, 43(2): 36-43. doi: 10.3963/j.jssn.1674-4861.2025.02.005
CAO Zhiyuan, MA Yong, CHENG Xuefu, HU Wentao. A Method for Inland Vessel Object Detection Based on PEW-YOLOv8[J]. Journal of Transport Information and Safety, 2025, 43(2): 36-43. doi: 10.3963/j.jssn.1674-4861.2025.02.005
Citation: CAO Zhiyuan, MA Yong, CHENG Xuefu, HU Wentao. A Method for Inland Vessel Object Detection Based on PEW-YOLOv8[J]. Journal of Transport Information and Safety, 2025, 43(2): 36-43. doi: 10.3963/j.jssn.1674-4861.2025.02.005

基于PEW-YOLOv8的内河船舶目标检测方法

doi: 10.3963/j.jssn.1674-4861.2025.02.005
基金项目: 

国家重点研发计划项目 2023YFB4302300

详细信息
    作者简介:

    曹智远(2000—),硕士研究生. 研究方向:船舶智能航行与海事保障. E-mail:czy57101624@whut.edu.cn

    通讯作者:

    马勇(1983—),博士,教授. 研究方向:船舶智能航行理论与技术、智能海事保障技术等. E-mail: myongdl@whut.edu.cn

  • 中图分类号: U675.73

A Method for Inland Vessel Object Detection Based on PEW-YOLOv8

  • 摘要: 内河船舶目标检测中,众多检测对象属于小目标范畴,其在图像中的像素占比有限,且由于水域环境干扰等问题,导致检测精度不足,误检、漏检现象频发,为此研究了PEW-YOLOv8(YOLOv8+P2检测层+EfficientNetV2+WIoUinner)目标检测算法。新增160×160分辨率的P2浅层次小目标检测层,通过32维特征空间重构实现多尺度特征的动态权重分配,设计高低层特征的双向交互机制,增强对小型船舶目标的特征提取能力;为应对多层次目标检测头导致的模型训练参数量增加的难题,采用改进的EfficientNetV2高效架构优化策略,引入Stems模块采用GELU激活函数避免梯度爆炸和训练不稳定,训练阶段保留扩展4倍的通道数,简化卷积结构显著加速训练过程,同时保证模型训练质量;设计动态非单调聚焦机制的WIoUinner损失函数,构建具有一定尺度差异的辅助预测框,加速边界框收敛速度,使模型在预测框与真实框重合良好时更注重中心点之间的距离,减轻几何度量的惩罚,从而提升模型的泛化能力。通过融合公开的Seaships数据集与自建数据集形成的数据集进行算法与实验验证,结果表明:同YOLOv10相比,PEW-YOLOv8平均检测精度达到94.8%,提升了3%,计算复杂度显著降低,FLOPs优化至3.7 G,降幅达43.1%,展现了在内河船舶目标检测精度和效率方面的优势;热力图分析进一步凸显了模型能有效聚焦内河船舶特征,验证了算法在复杂内河场景下的检测鲁棒性。

     

  • 图  1  PEW-YOLOv8模型结构

    Figure  1.  PEW-YOLOv8 network structure

    图  2  浅层次小目标检测头结构图

    Figure  2.  Structural diagram of shallow small object detection head

    图  3  多尺度特征融合结构图

    Figure  3.  Multi scale feature fusion structure diagram

    图  4  Stems模块

    Figure  4.  Stems module

    图  5  MBConv模块

    Figure  5.  MBConv module

    图  6  Fused-MBConv模块

    Figure  6.  Fused-MBConv module

    图  7  WIoU示意图

    Figure  7.  Schematic of WIoU

    图  8  部分真实图片数据集

    Figure  8.  Partial real image dataset

    图  9  总体损失曲线对比

    Figure  9.  Comparison of overall loss curves

    图  10  检测结果对比

    Figure  10.  Comparison of test results

    图  11  热力图对比

    Figure  11.  Comparison of heat maps

    表  1  消融实验结果

    Table  1.   Results of ablation experiment

    网络模型 mAP0.5/% mAP0.5:0.95/% FLOPs/G 参数量/M
    YOLOv8 90.8 76 8.7 3.0
    YOLOv8+P2 93.7 79 17.2 3.2
    YOLOv8+EfficientNetV2 92.2 77 2.6 2.4
    YOLOv8+P2+EfficientNetV 93.8 79 3.7 2.2
    YOLOv8+P2+EfficientNetV+WIoUinner 94.8 81 3.7 2.2
    下载: 导出CSV

    表  2  目标检测模型性能对比

    Table  2.   Performance comparison of object detection models

    网络模型 mAP0.5/% mAP0.5:0.95/% FLOPs/G 参数量/M
    YOLOv5n 89.5 73 7.6 5.8
    YOLO v6 91.2 74 8.1 6.1
    YOLOv7-tiny 90 75 10.1 7
    YOLOv8n 90.8 76 8.3 6.2
    YOLOv10n 91.8 78 6.5 2.3
    MBC-YOLO 92.1 80 9.0 2.6
    PEW-YOLOv8 94.8 81 3.7 2.2
    下载: 导出CSV
  • [1] 马勇, 王雯琦, 严新平. 面向新一代航运系统的船舶智能航行技术研究进展[J]. 中国科学: 技术科学, 2023, 53(11): 1795-1806.

    MA Y, WANG W Q, YAN X P. Research progress of vessel intelligent navigation technology for the new generation of waterborne transportation system[J]. Scientia Sinica Technologica, 2023, 53(11): 1795-1806. (in Chinese)
    [2] GUO J D, FENG H, XU H X, et al. D3-Net: integrated multi-task convolutional neural network for water surface deblurring, dehazing and object detection[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105558. doi: 10.1016/j.engappai.2022.105558
    [3] 马浩为, 张笛, 李玉立, 等. 基于改进YOLOv5的雾霾环境下船舶红外图像检测算法[J]. 交通信息与安全, 2023, 41 (1): 95-104.

    MA H W, ZHANG D, LI Y L, et al. A ship detection algorithm for infrared images under hazy environment based on an improved YOLOv5 algorithm[J]. Journal of Transport Information and Safety, 2023, 41(1): 95-104. (in Chinese)
    [4] CHEN X Q, WEI C X, XIN Z G, et al. Ship detection under low-visibility weather interference via an ensemble generative adversarial network[J]. Journal of Marine Science and Engineering, 2023, 11(11): 2065. doi: 10.3390/jmse11112065
    [5] 赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4): 629-654.

    ZHAO Y Q, RAO Y, DONG S P, et al. Survey on deep learning object detection[J]. Journal of Image and Graphics, 2020, 25 (4): 629-654. (in Chinese)
    [6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. The IEEE Conference On Computer Vision and Pattern Recognition, Seattle, American: IEEE, 2016.
    [7] ZHAO, Q J, TAO S, WANG Y T, et al. M2det: a single-shot object detector based on multi-level feature pyramid network[C]. 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, American: AAAI. 2019.
    [8] CHENG M, BAI J N, LI L Y, et al. Tiny-Retina Net: a onestage detector for real-time object detection[C]. 11th International Conference on Graphics and Image Processing, Hangzhou, China: SPIE. 2020.
    [9] ADARSH P, RATHI P, KUMAR M, et al. YOLO v3-Tiny: object detection and recognition using one stage improved model[C]. The 6th International Conference on Advanced Computing and Communication Systems, Coimbatore, India: ICACCS. 2020.
    [10] 林凯瀚, 赵慧民, 吕巨建, 等. 基于Mask R-CNN的人脸检测与分割方法[J]. 计算机工程, 2020, 46(6): 274-280.

    LIN K H, ZHAO H M, LV J J, et al. Face detection and segmentation method based on Mask R-CNN[J]. Computer Engineering, 2020, 46(6): 274-280. (in Chinese)
    [11] LI Y H, CHEN Y T, WANG N Y, et al. Scale-aware trident networks for object detection[C]. The IEEE/CVF International Conference on Computer Vision, Seoul, Korea: IEEE. 2019.
    [12] SHEN L Y, LANG B H, SONG Z X. DS-YOLOv8-based object detection method for remote sensing images[J]. IEEE Access, 2023, 11: 125122-125137. doi: 10.1109/ACCESS.2023.3330844
    [13] CHEN Z, LIU C, FILARETOV V F, et al. Multi-scale ship detection algorithm based on YOLOv7 for complex scene SAR images[J]. Remote Sensing, 2023, 15(8): 2071. doi: 10.3390/rs15082071
    [14] JI S J, LING Q H, HAN F. An improved algorithm for small object detection based on YOLO v4 and multi-scale contextual information[J]. Computers and Electrical Engineering, 2023, 105: 108490. doi: 10.1016/j.compeleceng.2022.108490
    [15] JIANG X, CAI J, WANG B. YOLOSeaShip: a lightweight model for real-time ship detection[J]. European Journal of Remote Sensing, 2024, 57(1): 2307613. doi: 10.1080/22797254.2024.2307613
    [16] LIU K, PENG L, TANG S. Underwater object detection using TC-YOLO with attention mechanisms[J]. Sensors, 2023, 23(5): 2567. doi: 10.3390/s23052567
    [17] ZHANG L, LIU Y, ZHAO W, et al. Frequency-adaptive learning for SAR ship detection in clutter scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-14.
    [18] LI J F, CHEN M X, HOU S Y, et al. An improved S2A-Net algorithm for ship object detection in optical remote sensing images[J]. Remote Sensing, 2023, 15(18): 4559. doi: 10.3390/rs15184559
    [19] 高新波, 莫梦竟成, 汪海涛, 等. 小目标检测研究进展[J]. 数据采集与处理, 2021, 36(3): 391-417.

    GAO X B, MO M J C, WANG H T, et al. Recent advances in small object detection[J]. Journal of Data Acquisition and Processing, 2021, 36(3): 391-417. (in Chinese)
    [20] YI H, LIU B, ZHAO B, et al. Small object detection algorithm based on improved YOLOv8 for remote sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 17: 1734-1747.
    [21] WANG F, WANG H, QIN Z, et al. UAV target detection algorithm based on improved YOLOv8[J]. IEEE Access, 2023, 11: 116534-116544. doi: 10.1109/ACCESS.2023.3325677
    [22] LIU C, WANG K G, LI Q, et al. Powerful-IoU: more straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism[J]. Neural Networks, 2024, 170: 276-284. doi: 10.1016/j.neunet.2023.11.041
    [23] 王海群, 魏培旭, 解浩龙, 等. 基于改进YOLOv8的红外船舶检测[J]. 电光与控制, 2025, 32(1): 61-67.

    WANG H Q, WEI P X, XIE H L, et al. Infrared ship detection based on improved YOLOv8[J]. Electronics Optics & Control, 2025, 32(1): 61-67. (in Chinese)
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  24
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-06
  • 网络出版日期:  2025-09-29

目录

    /

    返回文章
    返回