A Method of Risk Assessment for Subway Stations Based on D-S Evidence Theory
-
摘要: 高密度客流的安全风险评估对提升城市轨道交通系统应急响应能力具有重要意义。为解决传统评估方法存在的指标体系不健全、多源数据融合不充分、评估精准度低等问题,提出了改进的Dempster-Shafer(D-S)证据理论方法。该方法基于涵盖人员、设备、客流量、环境、管理的五维度指标体系,通过博弈论组合赋权确定综合权重,采用半梯形模糊隶属度函数量化各指标的安全等级隶属度,利用Jousselme距离公式构建证据相似度矩阵,引入校准系数和调节参数增强高冲突证据的识别与处理能力,运用线性加权得出风险等级。以宁波地铁鼓楼站为例,采集节假日晚高峰客流数据与专家评判信息构建多源证据集,并开展对比验证。结果显示:①与传统D-S方法、Yager方法相比,本文方法的平均冲突分别降低了34.4%和8.5%;②关键指标“客流量”隶属R3等级值达0.820 2,说明本文方法对高密度客流场景具备良好表征能力;③本文方法具有较强的适应性与稳定性,多场景对比验证中误差率低于5%。研究结果对高密度客流下轨道交通安全风险的识别与控制具有一定的借鉴价值。Abstract: The safety risk assessment of high-density passenger flow holds significant importance for improving the emergency response capabilities of urban metro systems. To address t traditional methods'limitations, such as inadequate indicator systems, insufficient integration of multi-source data, and low assessment accuracy, an enhanced Dempster-Shafer (D-S) evidence theory method was proposed. This method is structured around a five-dimensional indicator system encompassing personnel, equipment, passenger flow, environmental conditions, and management protocols. Comprehensive weights were determined through Game Theory-Combinatorial Empowerment. The safety level membership degrees of each indicator were quantified using a fuzzy half-gradient affiliation function, while an evidence similarity matrix is constructed via Jousselme's evidential distance function. To address high-conflict evidence, a calibration factor α, and adjustment parameter μ, are introduced to refine the fusion process, where the final risk level derived through a linear weighted method. A case study was conducted at Ningbo Metro Gulou Station, utilizing holiday evening peak passenger flow data and expert evaluations to establish a multi-source evidence set for validation. The results demonstrated that: ①Compared to the traditional D-S method and Yager's method, the proposed approach reduces average evidence conflicts by 34.4% and 8.5%, respectively; ②The membership grade of the critical"passenger flow"indicator has an R3 rank value reaches 0.8202, confirming the method's effectiveness in characterizing scenarios of high-density passenger flow; ③The proposed method exhibits robust adaptability and stability, with an error rate below 5% in the comparison of multiple scenarios. These findings provided actionable insights for identifying and mitigating risks in metro systems under high-density passenger flow conditions.
-
Key words:
- traffic engineering /
- subway station /
- security risk assessment /
- D-S evidence theory /
- passenger flow
-
表 1 三级指标安全风险等级MASS函数矩阵
Table 1. Matrix of MASS functions for the security risk level of the three-level indicator
三级指标 R1 R2 R3 R4 Θ 三级指标 R1 R2 R3 R4 Θ A1 0.122 1 0.648 6 0.229 3 0.000 0 0.000 0 C4 0.000 0 0.080 4 0.186 5 0.733 1 0.000 0 A2 0.887 8 0.112 2 0.000 0 0.000 0 0.000 0 C5 0.931 4 0.068 6 0.000 0 0.000 0 0.000 0 A3 0.792 8 0.196 2 0.011 0 0.000 0 0.000 0 C6 0.000 0 0.0804 0.186 5 0.733 1 0.000 0 B1 0.000 0 0.205 7 0.794 3 0.000 0 0.000 0 D1 0.003 0 0.719 7 0.277 3 0.000 0 0.000 0 B2 0.000 0 0.000 0 0.141 0 0.857 1 0.000 0 D2 0.000 0 0.603 4 0.396 6 0.000 0 0.000 0 B3 0.000 0 0.621 2 0.378 8 0.000 0 0.000 0 D3 0.000 0 0.144 8 0.854 7 0.000 5 0.000 0 B4 0.947 4 0.052 6 0.000 0 0.000 0 0.000 0 D4 0.466 7 0.533 3 0.000 0 0.000 0 0.000 0 B5 0.875 0 0.125 0 0.000 0 0.000 0 0.000 0 D5 0.000 0 0.144 8 0.854 7 0.000 5 0.000 0 B6 0.886 9 0.113 1 0.000 0 0.000 0 0.000 0 E1 0.352 6 0.645 1 0.002 3 0.000 0 0.000 0 C1 0.000 0 0.080 4 0.186 5 0.733 1 0.000 0 E2 0.753 6 0.246 4 0.000 0 0.000 0 0.000 0 C2 0.000 0 0.321 0 0.679 0 0.000 0 0.000 0 E3 0.923 3 0.076 7 0.000 0 0.000 0 0.000 0 C3 0.000 0 0.019 7 0.178 6 0.801 7 0.000 0 E4 0.853 6 0.123 3 0.023 1 0.000 0 0.000 0 表 2 二级指标安全等级隶属度矩阵
Table 2. Matrix of security level affiliations for level two indicators
评估指标 R1 R2 R3 R4 Θ A 0.857 5 0.142 5 0.000 0 0.000 0 0 B 0.2438 0.3151 0.441 1 0.000 0 0 C 0.000 0 0.061 0 0.820 2 0.118 8 0 D 0.000 0 0.699 4 0.300 6 0.000 0 0 E 0.823 6 0.176 1 0.000 3 0.000 0 0 表 3 不同站点安全风险评估结果
Table 3. Safety risk assessment results of different sites
站点 指标 R1 R2 R3 R4 Θ 鼓楼站 A 0.857 5 0.142 5 0.000 1 0.000 0 0 B 0.3426 0.5572 0.1002 0.000 0 0 C 0.647 7 0.241 5 0.110 8 0.000 0 0 D 0.000 0 0.699 4 0.300 6 0.000 0 0 E 0.823 6 0.176 1 0.000 3 0.823 6 0 T 0.693 9 0.251 1 0.055 0 0.000 0 - 城隍庙站 A 0.857 5 0.142 5 0.000 0 0.000 0 0 B 0.307 7 0.652 2 0.040 1 0.000 0 0 C 0.115 9 0.725 3 0.114 5 0.044 3 0 D 0.133 2 0.658 5 0.208 3 0.000 0 0 E 0.823 6 0.176 1 0.000 3 0.000 0 0 T 0.215 6 0.724 4 0.060 0 0.000 0 - 表 4 不同方法二级指标融合结果对比
Table 4. Comparison of secondary index synthesis results under different methods
方法 指标 R1 R2 R3 R4 Θ 传统D-S方法 A 0.993 3 0.006 6 0.000 0 0.000 0 0.000 1 B 0.000 0 0.000 0 0.000 0 0.000 0 1.000 0 C 0.000 0 0.262 3 0.000 0 0.000 0 0.737 7 D 0.000 0 0.997 9 0.000 0 0.000 0 0.002 0 E 0.994 6 0.004 9 0.000 0 0.000 0 0.000 3 Yager方法 A 0.491 0 0.0737 0.000 0 0.000 0 0.007 3 B 0.000 0 0.478 8 0.000 0 0.000 0 0.033 5 C 0.000 0 0.500 4 0.3789 0.000 0 0.378 9 D 0.000 0 0.516 0 0.4833 0.000 0 0.000 7 E 0.647 8 0.003 2 0.001 0 0.000 0 0.002 4 改进的D-S方法 A 0.857 5 0.142 5 0.000 0 0.000 0 0.000 0 B 0.243 8 0.315 1 0.441 1 0.000 0 0.000 0 C 0.000 0 0.061 0 0.820 2 0.118 8 0.000 0 D 0.000 0 0.699 4 0.300 6 0.000 0 0.000 0 E 0.823 6 0.176 1 0.000 3 0.000 0 0.000 0 表 5 不同方法安全等级计算结果对比
Table 5. Comparison of safety level calculation results of different methods
方法 R1 R2 R3 R4 传统D-S方法 0.199 9 0.170 1 0.000 0 0.000 0 Yager方法 0.109 8 0.404 1 0.196 2 0.000 0 改进的D-S方法 0.242 1 0.186 4 0.517 6 0.053 9 -
[1] YN N, WANG Y, ZHOU Y, et al. Field study and analysis of passenger density in the beijing subway transfer hall[J]. Buildings, 2024, 14(8): 2504. doi: 10.3390/buildings14082504 [2] 孙立山, 宫庆胜, 崔丽, 等. 高密度客流激波现象识别与分析[J]. 重庆交通大学学报(自然科学版), 2019, 38(4): 94-99.SUN L S, GONG Q S, CUI L, et al. Recognition and analysis of high density pedestrian shockwaves phenomenon[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(4): 94-99. (in Chinese) [3] 张矢宇, 杨云超, 杨宇昊. 考虑客流时变特性的列车时刻表优化方法[J]. 运筹与管理, 2023, 32(8): 44-50.ZHANG S Y, YANG Y C, YANG Y H, et al. A train schedule optimization method considering the time-varying characteristics of passenger flow[J]. Operations Research and Management Science, 2019, 38(4): 94-99. (in Chinese) [4] WANG T, SONG J, ZhANG J, et al. Short-term metro passenger flow prediction based on hybrid spatiotemporal extraction and multi-feature fusion[J]. Tunnelling and Underground Space Technology, 2025, 159: 106491. doi: 10.1016/j.tust.2025.106491 [5] SHANG P, LI R, GUO J, et al. Integrating lagrangian and eulerian observations for passenger flow state estimation in an urban rail transit network: a space-time-state hyper network-based assignment approach[J]. Transportation Research Part B: Methodological, 2019, 121: 135-167. doi: 10.1016/j.trb.2018.12.015 [6] FU X, ZUO Y, WU J, et al. Short-term prediction of metro passenger flow with multi-source data: a neural network model fusing spatial and temporal features[J]. Tunnelling and Underground Space Technology, 2022, 124: 104486. doi: 10.1016/j.tust.2022.104486 [7] 王炜, 姚恩建, 张子龙, 等. 城市轨道交通车站客流风险评估研究[J]. 中国铁路, 2025(1): 109-114.WANG W, YAO E J, ZHANG Z L, et al. Research on assessment of passenger flow risks in urban rail transit stations[J]. China Railway, 2025(1): 109-114. (in Chinese) [8] FENG J, LI X, MAO B, et al. Weighted complex network analysis of the beijing subway system: train and passenger flows[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 474: 213-223. doi: 10.1016/j.physa.2017.01.085 [9] CORNET S, BUISSON C, RAMOND F, et al. Methods for quantitative assessment of passenger flow influence on train dwell time in dense traffic areas[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 345-359. doi: 10.1016/j.trc.2019.05.008 [10] 马壮林, 程会媛, 邵逸恒, 等. 大客流干扰下多层公交-地铁网络的韧性评估[J]. 中国公路学报, 2024, 37(6): 267-278.MA Z L, CHENG H Y, SHAO Y H, et al. Resilience assessment of multilayer bus-metro network under large passenger flow interference[J]. China Journal of Highway and Transport, 2024, 37(6): 267-278. (in Chinese) [11] CHEN J, LIU C, MENG Y, et al. Multi-dimensional evacuation risk evaluation in standard subway station[J]. Safety Science, 2021, 142: 105392. doi: 10.1016/j.ssci.2021.105392 [12] GUO K, ZHANG L. Adaptive multi-objective optimization for emergency evacuation at metro stations[J]. Reliability Engineering & System Safety, 2022, 219: 108210. [13] FENG J R, GAI W, YAN Y. Emergency evacuation risk assessment and mitigation strategy for a toxic gas leak in an underground space: the case of a subway station in guangzhou, china[J]. Safety Science, 2021, 134: 105039. doi: 10.1016/j.ssci.2020.105039 [14] 许锡伟, 陈炜, 陈冠麟, 等. 数智化地铁安全应急保障系统建设研究[J]. 都市快轨交通, 2024, 37(2): 54-59.XU X W, CHEN W, CHEN G L, et al. Construction of a digitized and intelligent subway safety emergency assurance system[J]. Urban Rapid Rail Transit, 2024, 37(2): 54-59. (in Chinese) [15] 何友, 刘瑜, 李耀文, 等. 多源信息融合发展及展望[J/ OL]. 航空学报, 1-27[2025-05-05].HE Y, LIU Y, LI Y W, et al. Development and prospects of multisource information fusion[J]. Acta Aeronautica et Astronautica Sinica, 1-27[2025-05-05]. (in Chinese) [16] TANG L, LU Z, FAN B. Energy efficient and reliable routing algorithm for wireless sensors networks[J]. Applied Sciences, 2020, 10(5): 1885. doi: 10.3390/app10051885 [17] LI S, LIU C, ZHOU Z, et al. Multi-sources information fusion analysis of water inrush disaster in tunnels based on improved theory of evidence[J]. Tunnelling and Underground Space Technology, 2021, 113: 103948. doi: 10.1016/j.tust.2021.103948 [18] ZHANG W, ZHANGY, ZHANG C. Navigation risk assessment of intelligent ships based on ds-fuzzy weighted distance bayesian network[J]. Ocean Engineering, 2024, 313: 119452. doi: 10.1016/j.oceaneng.2024.119452 [19] 邓勇, 施文康. 1种改进的证据推理组合规则[J]. 上海交通大学学报, 2003(8): 1275-1278.DENG Y, SHI W K. A modified combination rule of evidence theory[J]. Journal of Shanghai Jiaotong University, 2003(8): 1275-1278. (in Chinese) [20] 汤青慧, 刘硕, 刘文杰. 基于改进变权物元可拓模型的地铁车站火灾安全韧性评价[J]. 安全与环境学报, 2024, 24 (4): 1346-1355.TANG Q H, LIU S, LIU W J. Safety assessment of metro station operation based on improved extension and matter element method[J]. Urban Mass Transit, 2024, 24 (4) : 1346-1355. (in Chinese) [21] 汪益敏, 罗跃, 于恒, 等. 人员密集型地铁车站安全风险评价方法[J]. 交通运输工程学报, 2020, 20(5): 198-207.WANG Y M, LUO Y, YU H, et al. Evaluation method of security risk on crowded metro station[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 198-207. (in Chinese) [22] 张继信, 黄东阳, 王东民, 等. 基于组合赋权和TOPSIS-GRA法的城市地铁车站应急疏散能力评价[J]. 铁道标准设计, 2024, 68(7): 178-184, 225.ZHANG J X, HUANG D Y, WANG D M, et al. Evaluation of emergency evacuation capacity of urban subway stations based on combined weighting and topsis-gra method[J]. Railway Standard Design, 2024, 68(7): 178-184, 225. (in Chinese) [23] 徐东. 《地铁安全疏散规范》车站疏散适用性分析[J]. 都市快轨交通, 2019, 32(1): 142-149.XU D. Applicability analysis of code for safety evacuation of metro on metro station evacuation[J]. Urban Rapid Rail Transit. 2019, 32(1): 142-149. (in Chinese) -