留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于盛行交通流的终端空域运行风险评估方法

支婧文 张军峰 马曌

支婧文, 张军峰, 马曌. 基于盛行交通流的终端空域运行风险评估方法[J]. 交通信息与安全, 2025, 43(2): 11-18. doi: 10.3963/j.jssn.1674-4861.2025.02.002
引用本文: 支婧文, 张军峰, 马曌. 基于盛行交通流的终端空域运行风险评估方法[J]. 交通信息与安全, 2025, 43(2): 11-18. doi: 10.3963/j.jssn.1674-4861.2025.02.002
ZHI Jingwen, ZHANG Junfeng, MA Zao. Operational Risk Assessment of Terminal Airspace with Prevailing Traffic Flow[J]. Journal of Transport Information and Safety, 2025, 43(2): 11-18. doi: 10.3963/j.jssn.1674-4861.2025.02.002
Citation: ZHI Jingwen, ZHANG Junfeng, MA Zao. Operational Risk Assessment of Terminal Airspace with Prevailing Traffic Flow[J]. Journal of Transport Information and Safety, 2025, 43(2): 11-18. doi: 10.3963/j.jssn.1674-4861.2025.02.002

基于盛行交通流的终端空域运行风险评估方法

doi: 10.3963/j.jssn.1674-4861.2025.02.002
基金项目: 

国家自然科学基金项目 52372315

南京航空航天大学研究生科研与实践创新项目 xcxjh20230734

详细信息
    作者简介:

    支婧文(2021—),硕士研究生. 研究方向:交通运输规划与管理. E-mail:zhijingwen0405@163.com

    通讯作者:

    张军峰(1979—),博士,副教授. 研究方向:交通运输规划与管理、管制自动化与智能化、四维航迹管理等. E-mail:zhangjunfeng@nuaa.edu.cn

  • 中图分类号: V355

Operational Risk Assessment of Terminal Airspace with Prevailing Traffic Flow

  • 摘要: 运行风险的刻画及评估是提高空域运行的安全性及管理能力中的关键步骤,在结构复杂、起降交织的终端空域运行风险评估更是关键因素。传统碰撞风险模型多集中于事前单机冲突检测及固定航路碰撞风险,在表征终端空域运行结构及事后风险态势分析方面存在不足。针对终端空域运行风险评估问题,从终端空域航迹数据中通过聚类获得盛行交通流,提取其中冲突场景的几何构型,刻画包含航空器机动调整及空域复杂性的冲突结构及冲突场景。结合风险点中涉及交通流的时间、空间分布情况,挖掘历史运行中的空域风险信息,建立单位时间内的航空器预计碰撞次数作为终端空域的风险评估指标。通过对不同时空尺度的指标数值累加,能够实现不同时空域内的风险量化及热点发掘,并对风险较高的交通流及风险热点提供预警,为后续管制调配、战术规划及空域建设提供指导。结果表明:该模型能够很好的表征空域运行风险并发现风险热点,以广州白云机场终端空域为例,发现该空域存在以下运行风险类型及时空风险热点:进场与进场之间的运行风险是广州终端空域的主要风险;VIBOS离场交通流在广州白云机场北向运行时需要重点关注;下午13:00—14:00,以及夜间22:00—02:00是广州终端空域安全运行需要着重考量的时间段。

     

  • 图  1  终端空域运行风险评估技术路线图

    Figure  1.  Technical roadmap for risk assessment of terminal airspace operation

    图  2  DBSCAN聚类中的集群1

    Figure  2.  Cluster 1 in DBSCAN clustering

    图  3  对集群1二级聚类产生的4个子集群

    Figure  3.  Four sub-clusters generated by second-level clustering of cluster 1

    图  4  航空器水平重叠示意图

    Figure  4.  Schematic diagram of horizontal overlap of two aircraft

    图  5  广州机场进离场航迹示意图

    Figure  5.  Diagram of arrival and departure trajectories in ZGGG

    图  6  广州机场进离场盛行交通流中心轨迹示意图

    Figure  6.  Central trajectories diagram of arrival and departure prevailing traffic flow in ZGGG

    图  7  #AA类别构成交叉点交通流示意图

    Figure  7.  Traffic flow diagram at the intersection points of #AA category

    图  8  #DD类别构成交叉点交通流示意图

    Figure  8.  Traffic flow diagram at the intersection point of #DD category

    图  9  #AD类别的交叉点示意图

    Figure  9.  Intersection point diagram of #AD category

    图  10  #AA类别风险时间分布折线图

    Figure  10.  Risk time distribution line chart of #AA category

    表  1  不同类型交叉点的分布

    Table  1.   Distribution of different types of intersections

    类别 个数 占比/%
    #AA 46 27.5
    #AD 65 38.9
    #DD 56 33.6
    下载: 导出CSV

    表  2  交叉点预计的月累计碰撞风险

    Table  2.   Estimated monthly collision risk at intersections

    类别 轨迹簇1 轨迹簇2 PH NCol
    #1 #5 2.15×10-04 3.04×10-04
    #AA #0 #6 9.49×10-05 2.65×10-04
    #0 #6 1.27×10-04 1.00×10-04
    #5 #17 1.30×10-13 1.52×10-13
    #AD #1 #17 7.66×10-15 5.73×10-16
    #3 #17 4.20×10-16 3.17×10-17
    #11 #12 6.16×10-04 2.68×10-02
    #DD #15 #16 2.27×10-11 6.32×10-12
    #15 #16 4.35×10-12 1.64×10-12
    下载: 导出CSV
  • [1] QU Y, HAN S. A method to calculate the collision risk on air-route[C]. International Conference on Management and Service Science, Wuhan, China: IEEE, 2010.
    [2] AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277. doi: 10.1016/S0266-8920(01)00019-4
    [3] 刘章. 基于REICH模型的同高度交叉航路碰撞风险研究[J]. 深圳大学学报(理工版), 2020, 37(2): 136-142.

    LIU Z. Collision risk of crossing airlines at the same altitude based on REICH model[J]. Journal of Shenzhen University (Science and Engineering), 2020, 37(2): 136-142. (in Chinese)
    [4] 王莉莉, 刘鑫宇. 基于自主改航的交叉航班流预先冲突解脱研究[J/OL]. 西南交通大学学报, 2024-03[2024-11-22]. http://kns.cnki.net/kcms/detail/51.1277.U.20240322.1643.006.html.

    WANG L L, LIU X Y. Research on cross-flight flow pre-conflict resolution based on auto-rerouting[J/OL]. Journal of Southwest Jiaoton University, 2024-03[2024-11-22]. http://kns.cnki.net/kcms/detail/51.1277.U.20240322.1643.006.html. (in Chinese)
    [5] 王莉莉, 阳杰. 基于速度随机分布的低空空域小型无人机碰撞风险评估模型[J]. 交通信息与安全, 2022, 40(4): 64-70. doi: 10.3963/j.jssn.1674-4861.2022.04.007

    WANG L L, YANG J. A collision risk model for small UAVs based on velocity random distribution in low-altitude airspace[J]. Journal of Transport Information and Safety, 2022, 40(4): 64-70. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.007
    [6] 陈肯, 杨晓刚. 基于改进Event模型的航路垂直方向碰撞研究[J]. 航空计算技术, 2021, 51(5): 15-18.

    CHEN K, YANG X G. Vertical collision research of air routes based on the improved event model[J]. Aeronautical Computing Technique, 2021, 51(5): 15-18. (in Chinese)
    [7] MITICI M, BLOM H A P. Mathematical models for air traffic conflict and collision probability estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(3): 1052-1068.
    [8] PAIELLI R A, ERZBERGER H. Conflict probability estimation for free flight[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(3): 588-596. doi: 10.2514/2.4081
    [9] 王世锦. 繁忙终端空域飞行冲突风险[J]. 南京航空航天大学学报, 2013, 45(4): 538-543.

    WANG S J. Flight conflict risk in busy terminal aiespace[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(4): 538-543. (in Chinese)
    [10] FIGUET B, MONSTEIN R, WALTERT M, et al. Data-driven mid-air collision risk modelling using extreme-value theory[J]. Aerospace Science and Technology, 2023, 142: 108646. doi: 10.1016/j.ast.2023.108646
    [11] KRAUTH T, MORIO J, OLIVE X, et al. Advanced collision risk estimation in terminal manoeuvring areas using a disentangled variational autoencoder for uncertainty quantification[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108137. doi: 10.1016/j.engappai.2024.108137
    [12] BARRATT S T, KOCHENDERFER M J, BOYD S P. Learning probabilistic trajectory models of aircraft in terminal airspace from position data[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(9): 3536-3545.
    [13] ZHENG Y. Trajectory data mining: an overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6 (3): 1-41.
    [14] REHM F. Clustering of flight tracks[C]. AIAA Infotech@Aerospace (I@A) Conference, Georgia: AIAA, 2011.
    [15] ZHAO L, SHI G, A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition[J]. Ocean Engineering, 2019, 172(15): 456-467.
    [16] GARIEL M, SRIVASTAVA A N, FERON E. Trajectory clustering and an application to airspace monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12 (4): 1511-1524. doi: 10.1109/TITS.2011.2160628
    [17] CHEN L, NG R. On the marriage of Lp-norms and edit distance[C]. 30th International Conference on Very Large Data Bases, Toronto: VLDB, 2004.
    [18] HAN P, WANG W, SHI Q, et al. A combined online-learning model with K-means clustering and GRU neural networks for trajectory prediction[J]. Ad Hoc Networks, 2021, 117: 102476. doi: 10.1016/j.adhoc.2021.102476
    [19] LANG A, ERICH S. BETULA: numerically stable CF-trees for BIRCH clustering[C]. International Conference on Similarity Search and Applications, Denmark: Springer, 2020.
    [20] DENG D. DBSCAN clustering algorithm based on density[C]. 7th International Forum on Electrical Engineering and Automation, Hefei: IEEE, 2020.
    [21] DENG Z, HU Y, ZHU M, et al. A scalable and fast OPTICS for clustering trajectory big data[J]. Cluster Computing, 2015, 18: 549-62. doi: 10.1007/s10586-014-0413-9
    [22] MCLNNES L, HEALY J, ASTELS S. Hdbscan: Hierarchical density-based clustering[J]. The Journal of Open Source Software, 2017, 2(11): 205. doi: 10.21105/joss.00205
    [23] 戴福青, 李解. 基于PBN的中小机场终端区飞行程序优化研究[J]. 科学技术与工程, 2012, 12(34): 9270-9274, 9279.

    DAI F Q, LI J. Flight procedure optimization in terminal area of small and medium-sized airport based on PBN[J]. Science Technology and Engineering, 2012, 12 (34) : 9270-9274, 9279. (in Chinese)
    [24] 白鹏, 陈霖峰, 王玺, 等. 基于点融合的进场程序优化与航空器排序研究[J]. 中国安全科学学报, 2021, 31(12): 45-52.

    BAI P, CHEN L F, WANG X, et al. Research on arrival procedure optimization and aircraft sequencing based on point merging[J]. China Safety Science Journal, 2021, 31(12): 45-52. (in Chinese)
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-30
  • 网络出版日期:  2025-09-29

目录

    /

    返回文章
    返回