留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于WT-WOA的城市快速路交通震荡吸收策略

赵红亮 张兆磊 易可夫 吴伟 郭静

赵红亮, 张兆磊, 易可夫, 吴伟, 郭静. 基于WT-WOA的城市快速路交通震荡吸收策略[J]. 交通信息与安全, 2025, 43(1): 169-180. doi: 10.3963/j.jssn.1674-4861.2025.01.016
引用本文: 赵红亮, 张兆磊, 易可夫, 吴伟, 郭静. 基于WT-WOA的城市快速路交通震荡吸收策略[J]. 交通信息与安全, 2025, 43(1): 169-180. doi: 10.3963/j.jssn.1674-4861.2025.01.016
ZHAO Hongliang, ZHANG Zhaolei, YI Kefu, WU Wei, GUO Jing. Traffic Oscillation Absorption Strategy of Urban Expressway Based on WT-WOA[J]. Journal of Transport Information and Safety, 2025, 43(1): 169-180. doi: 10.3963/j.jssn.1674-4861.2025.01.016
Citation: ZHAO Hongliang, ZHANG Zhaolei, YI Kefu, WU Wei, GUO Jing. Traffic Oscillation Absorption Strategy of Urban Expressway Based on WT-WOA[J]. Journal of Transport Information and Safety, 2025, 43(1): 169-180. doi: 10.3963/j.jssn.1674-4861.2025.01.016

基于WT-WOA的城市快速路交通震荡吸收策略

doi: 10.3963/j.jssn.1674-4861.2025.01.016
基金项目: 

国家留学基金委国际合作项目 2023-21

湖南省重点研发计划项目 2023SK2052

教育部人文社会科学研究项目 22YJCZH189

长沙市科技计划项目 kh2202002

详细信息
    作者简介:

    赵红亮(1999—),硕士研究生. 研究方向:交通流理论、智能交通. E-mail:cslg_zhl@163.com

    通讯作者:

    易可夫(1987—),博士,副教授. 研究方向:智能交通. E-mail:corfyi@csust.edu.cn

  • 中图分类号: U491

Traffic Oscillation Absorption Strategy of Urban Expressway Based on WT-WOA

  • 摘要: 城市道路交通瓶颈点的交通震荡是诱发交通事故、通行延误和增加能源消耗的主要原因,缓解交通震荡可以显著提升交通运行效率和安全。为精确获取交通震荡的周期,研究了基于小波变换(wavelet transform,WT)的交通波时频分析方法,并开发了基于鲸鱼优化算法(whale optimization algorithm,WOA)的小波参数自适应标定方法。通过构建以交通震荡起止时间的识别误差绝对值为适应度函数,采用全局搜索机制克服局部最优问题,动态优化小波变换的尺度系数与平移系数,克服了小波变换易陷入局部最优的缺点,并解决了传统交通震荡识别方法中由于判别参数在阈值上下波动,导致识别不准确或误判的问题。在此基础上,提出融合能源消耗和驾驶安全的多目标协同交通波吸收控制框架,通过建立以燃油消耗率和交通安全指标的多目标优化函数,设计基于速度引导的车辆准入控制机制,在瓶颈区域上游实施动态速度调控,通过优化部分车辆行驶速度,减少进入交通瓶颈区的车辆数量,从而加快交通震荡的消散,抑制频繁加减速导致的能源损耗和安全风险。研究结果表明:在道路瓶颈区实施交通波吸收方法后,碰撞持续时间和综合碰撞时间分别降低了73.86%和61.07%,燃油消耗降低16.15%;分析网联自动驾驶车辆渗透率变化对控制方法影响发现,能耗和安全风险随渗透率增加而减小,渗透率≥0.3时,控制方法效果显著,能耗与安全风险都显著降低。

     

  • 图  1  基于WT-WOA的交通震荡识别图

    Figure  1.  Taffic oscillation identification diagram based on WT-WOA

    图  2  JAD控制策略示意图

    Figure  2.  Schematic diagram of JAD control strategy

    图  3  不同吸收车辆轨迹图

    Figure  3.  Vehicle trajectories with different absorption absorbing vehicle

    图  4  后车控制前后速度变化图

    Figure  4.  Speed change diagram before and after rear vehicle control

    图  5  不同吸收车辆行程时间图

    Figure  5.  Diagram of vehicle travel time with different absorption

    图  6  不同吸收车辆能耗指标对比图

    Figure  6.  Comparison chart of energy consumption indicators of different absorption vehicles

    图  7  优策略下部分车辆震荡区域延误图

    Figure  7.  Delay map of some vehicle shock areas under the optimal strategy

    图  8  控制效果对比图

    Figure  8.  Control effect comparison chart

    图  9  不同渗透率下不同吸收车辆的能耗和排放曲线

    Figure  9.  Energy consumption and emission curves of different absorption vehicles under different penetration rate

    图  10  不同渗透率下车辆安全控制效果

    Figure  10.  Vehicle safety control effect under different penetration rates

    图  11  不同车头时距下的车辆燃油消耗

    Figure  11.  Vehicle fuel consumption at different headways

    表  1  选取不同吸收车辆及速度的控制策略对安全指标的影响

    Table  1.   The impact of different absorption vehicle control strategies on safety indicators

    吸收车辆 TET TIT 吸收速度 J排序 吸收车辆 TET TIT 吸收速度 J排序
    1 2.08 0.09 15.96 10 6 55.87 50.42 36.44 4
    2 33.90 46.18 24.41 8 7 47.73 41.50 38.32 5
    3 73.86 61.07 25.79 1 8 44.32 38.57 38.91 6
    4 70.45 59.73 30.71 2 9 40.34 36.03 41.11 7
    5 61.17 50.41 33.08 3 10 36.36 31.53 42.34 9
        注:吸收速度的单位为km/h;J排序为不同控制策略下的适用度函数值排序
    下载: 导出CSV

    表  2  不同控制策略下的评估结果

    Table  2.   Evaluation results under different control strategies

    控制类型 本策略 WT-JAD 完全JAD 无控制
    行程时间/s 2 616.5 2 618.3 2 626.2 2 648.9
    总延误/s 665.3 665.9 665.9 665.9
    平均PMX/mg 0.362 0.370 0.447 0.490
    平均NOX/mg 0.305 0.313 0.332 0.354
    平均油耗/ml 661.019 692.595 730.189 788.319
    平均CO/mg 18.615 20.133 21.768 24.870
        注:基于小波变换的JAD策略、完全消除交通震荡的JAD策略在图表中命名分别简化为WT-JAD策略、完全JAD策略
    下载: 导出CSV

    表  3  最优交通震荡吸收策略下各车辆在震荡区的行程时间

    Table  3.   Travel time in the oscillation zone under the traffic oscillation mitigation strategy

    车辆 无控制/s 本策略/s 车辆 无控制/s 本策略/s
    头车 36.7 36.7 后车5 34.3 34.1
    后车1 36 36 后车6 33.9 33.4
    后车2 34.4 34.4 后车7 34 33.3
    后车3 34.8 35 后车8 34.3 33.6
    后车4 34.2 34.2 后车9 34 33.1
    下载: 导出CSV
  • [1] KHONDAKER B, KATTAN L. Variable speed limit: a microscopic analysis in a connected vehicle environment[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 146-159. doi: 10.1016/j.trc.2015.07.014
    [2] LU W, YI Z W, GU Y L, et al. TD3LVSL: a lane-level variable speed limit approach based on twin delayed deep deterministic policy gradient in a connected automated vehicle environment[J]. Transportation Research Part C: Emerging Tech-nologies, 2023, 153: 104221. doi: 10.1016/j.trc.2023.104221
    [3] IORDANIDOU G R, Papamichail I, RONCOLI C, et al. Feed-back-based integrated motorway traffic flow control with delay balancing[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2319-2329. doi: 10.1109/TITS.2016.2636302
    [4] HAN Y, HEGYI A, YUAN Y F, et al. Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits[J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 405-420. doi: 10.1016/j.trc.2017.02.009
    [5] MURALIDHARAN A, HOROWITZ R. Computationally efficient model predictive control of freeway networks[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 532-553. doi: 10.1016/j.trc.2015.03.029
    [6] 邵敬波, 黄轲, 张兆磊, 等. 高速公路连续瓶颈混合交通流可变限速与换道协同控制方法[J]. 交通信息与安全, 2023, 41 (3): 59-68, 79. doi: 10.3963/j.jssn.1674-4861.2023.03.007

    SHAO J B, HUANG K, ZHANG Z L, et al. A cooperative control method of variable speed limit and lane changefor mixed traffic flow on continuous bottlenecks of freeway[J]. Journal of Transport Information and Safety, 2023, 41(3): 59-68, 79. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.03.007
    [7] 白如玉, 焦朋朋, 陈越, 等. 基于强化学习的车道级可变限速控制策略[J]. 交通信息与安全, 2024, 42(1): 105-114. doi: 10.3963/j.jssn.1674-4861.2024.01.012

    BAI R Y, JIAO P P, CHEN Y, et al. Differential Variable Speed Limit Control Strategy Based on Reinforcement Learning[J]. Journal of Transport Information and Safety, 2024, 42(1): 105-114. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.01.012
    [8] ZHANG H Y, DU L L. Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part Ⅱ: Theoretical analysis[J]. Transportation Research Part B: Methodological, 2023: 172199-216.
    [9] HE H W, HAN M, LIU W, et al. MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle[J]. Energy, 2022, 253: 124004. doi: 10.1016/j.energy.2022.124004
    [10] AL-GABALAWY M, HOSNY N S, ABORISHA A S. Model predictive control for a basic adaptive cruise control[J]. International Journal of Dynamics and Control, 2021, 9(3): 1132-1143. doi: 10.1007/s40435-020-00732-w
    [11] 吴文静, 战勇斌, 杨丽丽, 等. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52 (6): 1315-1323.

    WU W J, ZHAN Y B, YANG L L, et al. Coordinated control method of variable speed limit in on-ramp area considering safety distance[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1315-1323. (in Chinese)
    [12] 韩雨, 郭延永, 张乐, 等. 消除高速公路运动波的可变限速控制方法[J]. 中国公路学报, 2022, 35(1): 151-158.

    HAN Y, GUO Y Y, ZHANG L, et al. An optimal variable speed limit control approach against freeway jam waves[J]. China Journal of Highway and Transport, 2022, 35(1): 151-158. (in Chinese)
    [13] ZHENG Z D. Recent developments and research needs in modeling lane changing[J]. Transportation Research Part B: Methodological, 2014, 60: 16-32. doi: 10.1016/j.trb.2013.11.009
    [14] LI Y, LI Z B, WANG H, et al. Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways[J]. Accident Analysis & Prevention, 2017, 104: 137-145.
    [15] YUAN R, YU H, ZHANG G H, et al. Optimal control strategy for traffic platoon longitudinal coordination around equilibrium state enabled by partially automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2024, 159: 104463.
    [16] WU Y K, TAN H C, QIN L Q, et al. Differential variable speed limits control for freeway recurrent bottlenecks via deep actor-critic algorithm[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102649.
    [17] DU Y, MAKRIDIS M A, TAMPÈRE C M J, et al. Adaptive control with moving actuators at motorway bottlenecks with connected and automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2023, 156: 104319.
    [18] NISHI R. Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios[J]. Physica A: Statistical Mechanics and its Applications, 2020, 542: 123393.
    [19] HE Z B, ZHENG L, SONG L Y, et al. A jam-absorption driving strategy for mitigating traffic oscillations[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 802-813.
    [20] ZHENG Y, ZHANG G Q, LI Y, et al. Optimal jam-absorption driving strategy for mitigating rear-end collision risks with oscillations on freeway straight segments[J]. Accident Analysis & Prevention, 2020, 135: 105367.
    [21] 李凯, 孙佳, 陈非, 等. 基于智能网联车的高速公路移动瓶颈实时检测方法[J]. 交通信息与安全, 2024, 42(5): 24-32. doi: 10.3963/j.jssn.1674-4861.2024.05.003

    LI K, SUN J, CHEN F, et al. A method for real-time detecting freeway moving bottlenecks using intelligent connected vehicles[J]. Journal of Transport Information and Safety, 2024, 42(5): 24-32. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.05.003
    [22] 陈鼎, 周水庭, 陈云, 等. 拥堵指数自适应调节的交通运行状态识别方法及应用研究[J]. 交通运输系统工程与信息, 2022, 22(2): 137-144.

    CHEN D, ZHOU S T, CHEN Y, et al. Traffic performance identification method based on adaptive congestion index[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 137-144. (in Chinese)
    [23] 付子圣, 李秋萍, 柳林, 等. 利用GPS轨迹二次聚类方法进行道路拥堵精细化识别[J]. 武汉大学学报(信息科学版), 2017, 42(9): 1264-1270.

    FU Z S, Ll Q P, LLU L, et al. Identification of urban network congested segments using GPS trajectories double-clustering method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. (in Chinese)
    [24] 韦伟, 毛保华, 陈绍宽, 等. 基于当期事件识别的拥堵传播特征研究[J]. 交通运输系统工程与信息, 2016, 16(4): 165-170.

    WEI W, MAO B H, CHEN S K, et al. Spatial propagating study of urban traffic congestion based on current event recognition[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(4): 165-170. (in Chinese)
    [25] LI X P, PENG F, OUYANG Y F. Measurement and estimation of traffic oscillation properties[J]. Transportation Research Part B: Methodological, 2009, 44(1): 1-14.
    [26] ZHENG Z D, AHN S, CHEN D J, et al. Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet transform[J]. Transportation Research Part B: Methodological, 2011, 45(9): 1378-1388.
    [27] LI S Y, YANAGISAWA D, NISHINARI K. A jam-absorption driving system for reducing multiple moving jams by estimating moving jam propagation[J]. Transportation Research Part C: Emerging Technologies, 2024, 158: 104394.
    [28] DU W D, ZHANG Q Y, CHEN Y P, et al. An urban short-term traffic flow prediction model based on wavelet neural network with improved whale optimization algorithm[J]. Sustainable Cities and Society, 2021, 69
    [29] 李熙莹, 梁靖茹, 郝腾龙. 考虑连锁冲突的城市公交车行车风险量化分析方法[J]. 交通信息与安全, 2022, 40(3): 19-29. doi: 10.3963/j.jssn.1674-4861.2022.03.003

    LI X Y, LANG J R, HAO T L. A method for quantitatively analyzing risks associated with the operation of urban buses considering chained conflicts[J]. Journal of Transport Information and Safety, 2022, 40(3): 19-29. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.003
    [30] 王顺超, 李志斌, 吴瑶, 等. 面向瓶颈多簇运动波消除的拥堵吸收智能驾驶模型[J]. 中国公路学报, 2022, 35(1): 137-150.

    WANG S C, Ll Z B, WU Y, et al. An intelligent jam-absorbing driving strategy for eliminating multiple traffic oscillations at bottlenecks[J]. China Journal of Highway and Transport, 2022, 35(1): 137-150. (in Chinese)
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 网络出版日期:  2025-06-27

目录

    /

    返回文章
    返回