留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑形态参数的自动驾驶卡车编队油耗分析

张希 宋明涛 黄妍妮 陈丰

张希, 宋明涛, 黄妍妮, 陈丰. 考虑形态参数的自动驾驶卡车编队油耗分析[J]. 交通信息与安全, 2025, 43(1): 152-160. doi: 10.3963/j.jssn.1674-4861.2025.01.014
引用本文: 张希, 宋明涛, 黄妍妮, 陈丰. 考虑形态参数的自动驾驶卡车编队油耗分析[J]. 交通信息与安全, 2025, 43(1): 152-160. doi: 10.3963/j.jssn.1674-4861.2025.01.014
ZHANG Xi, SONG Mingtao, HUANG Yanni, CHEN Feng. Analysis of the Autonomous Truck Platoon's Fuel Consumption Considering Morphological Parameters[J]. Journal of Transport Information and Safety, 2025, 43(1): 152-160. doi: 10.3963/j.jssn.1674-4861.2025.01.014
Citation: ZHANG Xi, SONG Mingtao, HUANG Yanni, CHEN Feng. Analysis of the Autonomous Truck Platoon's Fuel Consumption Considering Morphological Parameters[J]. Journal of Transport Information and Safety, 2025, 43(1): 152-160. doi: 10.3963/j.jssn.1674-4861.2025.01.014

考虑形态参数的自动驾驶卡车编队油耗分析

doi: 10.3963/j.jssn.1674-4861.2025.01.014
基金项目: 

国家自然科学基金项目 51978522

详细信息
    作者简介:

    张希(1985—),博士研究生. 高级工程师. 研究方向:交通管理与安全等. E-mail: zhangxi@szsti.org

    通讯作者:

    宋明涛(1994—),博士,工程师. 研究方向:交通管理与安全等. E-mail: drmingyang@163.com

  • 中图分类号: U461.8

Analysis of the Autonomous Truck Platoon's Fuel Consumption Considering Morphological Parameters

  • 摘要: 纵向间隔距离、横向偏移距离、横向分布模式、车辆数量等形态参数直接影响卡车编队空气阻力特性,进而影响其油耗。解析形态参数对卡车编队油耗的影响有利于合理制定卡车编队方案,优化自动驾驶卡车编队燃油节省率,并可为综合性评估自动驾驶卡车编队经济效益提供数据参考。采集并分析了卡车行驶状态数据,构建了不同形态参数组合的卡车编队方案,并基于三维非结构化网格建模方法,建立了343个2车编队与2 401个3车编队的计算流体力学模型。通过计算流体力学数值模拟,解算所有编队形态的车辆空气阻力系数。利用获取的编队车辆空气阻力系数,采用蒙特卡洛模拟随机取样并结合油耗计算流程,实现动态编队的车辆油耗估计。结果表明:较小的纵向间隔距离与横向偏移距离更有利于降低编队整体油耗,且3车编队的燃油节省率优于2车编队。2车编队领航车与队尾车空气阻力系数分别为单辆车的87.43%~100.6%与58.00%~76.30%;3车编队领航车、中间车、队尾车的空气阻力系数分别为单辆车的84.19%~100.9%、45.65%~81.19%与45.24%~77.20%。对于横向偏移,引入的横向分布模式消减了横向偏移对编队燃油节省率的不利影响;当纵向间隔距离为6 m、横向分布宽度为90 cm、横向分布模式为正态分布时,2车编队与3车编队的车辆均节省燃油10.71%与15.65%。

     

  • 图  1  1 782辆大型货车横向位置分布图

    Figure  1.  The lateral distribution of 1 782 large trucks

    图  2  卡车模型

    Figure  2.  The truck model

    图  3  某3车编队计算模型示意图

    Figure  3.  Computing domain of a three-truck platoon

    图  4  不同形态参数下2车编队领航车与队尾车空气阻力系数

    Figure  4.  The two-truck platoon's air drag coefficient with different formation parameters

    图  5  C-WTVC重型商用车速度与加速度循环曲线

    Figure  5.  Velocity and acceleration cycle curve of a heavy commercial truck from C-WTVC

    图  6  不同纵横向形态参数下2车编队车均燃油节省率

    Figure  6.  The average fuel saving rate of a two-truck platoon with different lateral offset and longitudinal interval

    表  1  当前研究中卡车编队的纵向间隔距离取值情况

    Table  1.   The value of longitudinal interval distance of truck platoon in the current study

    作者或项目 车辆数/辆 实验方法 速度/(km/h) 纵向间隔/m
    Promote-Chauffeur项目[22] 2 试验跑道 80 6.7~14
    PATH项目[23] 2 机场跑道 89 10
    SARTRE项目 2 高速公路 85 8~15
    Energy ITS[24] 4 高速公路 80 4.7~10
    Ellis等[25] 3 仿真场景 105 5
    Vegendla等[26] 2 仿真场景 89 9~30
    Bishop等[27] 2 室外试验 105 9
    Nuszkowski等[8] 2 高速公路 100 67.4
    下载: 导出CSV

    表  2  不同形态参数下3车编队空气阻力系数比Cd/Cd0

    Table  2.   Air drag coefficient Cd/Cd0 of a three-truck platoon with different formation morphological parameters

    车辆位次 不同纵向间隔距离下3车编队空气阻力系数比Cd/Cd0/%
    Z=6m Z=9m Z=12m Z=18m Z=24m Z=36m Z=48m
    领航车 最小值 84.19 90.91 94.63 97.49 98.09 98.41 98.31
    均值 86.06 93.08 96.79 99.25 99.84 100.00 99.88
    最大值 87.75 94.77 97.68 100.50 100.90 101.50 101.10
    中间车 最小值 45.65 53.05 57.92 62.97 66.18 69.50 71.83
    均值 52.17 58.45 62.41 66.78 69.14 72.06 73.93
    最大值 64.55 69.51 73.38 75.00 77.11 78.64 81.19
    队尾车 最小值 45.24 48.20 50.16 54.09 57.19 61.87 64.65
    均值 51.23 52.65 53.99 57.09 60.43 64.99 67.75
    最大值 67.69 69.27 67.99 68.20 70.18 71.22 77.20
    下载: 导出CSV

    表  3  不同动态编队形态下2车编队车均燃油节省率

    Table  3.   The average fuel saving rates of a dynamic two-truck platoon with different formations.

    编队方案 不同纵向间隔距离下2车编队车均燃油节省率/%
    Z=6m Z=9m Z=12m Z=18m Z=24m Z=36m Z=48m
    W10_f1 11.21 9.35 8.19 7.12 6.54 6.19 5.73
    W10_f2 11.19 9.36 8.19 7.12 6.54 6.19 5.72
    W20_f1 11.16 9.37 8.19 7.11 6.54 6.20 5.70
    W20_f2 11.13 9.38 8.19 7.10 6.55 6.20 5.69
    W40_f1 11.07 9.34 8.17 7.08 6.55 6.18 5.69
    W40_f2 11.01 9.26 8.14 7.06 6.54 6.16 5.71
    W60_f1 10.96 9.22 8.12 7.04 6.53 6.15 5.71
    W60_f2 10.80 9.06 8.03 6.97 6.48 6.11 5.71
    W90_f1 10.71 8.99 7.98 6.93 6.44 6.09 5.71
    W90_f2 10.42 8.75 7.80 6.79 6.31 6.04 5.68
    下载: 导出CSV

    表  4  不同动态编队形态下3车编队车均燃油节省率

    Table  4.   The average fuel saving rates of a dynamic three-truck platoon with different formations.

    编队方案 不同纵向间隔距离下3车编队车均燃油节省率/%
    Z=6m Z=9m Z=12m Z=18m Z=24m Z=36m Z=48m
    W10_f1 16.20 14.01 12.61 11.05 10.02 8.79 8.09
    W10_f2 16.21 14.01 12.62 11.05 10.03 8.82 8.11
    W20_f1 16.21 14.01 12.63 11.04 10.04 8.86 8.13
    W20_f2 16.21 14.00 12.62 11.03 10.03 8.89 8.14
    W40_f1 16.13 13.94 12.58 11.00 10.01 8.90 8.17
    W40_f2 16.02 13.85 12.51 10.94 9.98 8.89 8.20
    W60_f1 15.96 13.80 12.48 10.93 9.99 8.88 8.21
    W60_f2 15.75 13.64 12.36 10.85 9.95 8.85 8.23
    W90_f1 15.65 13.56 12.29 10.82 9.92 8.82 8.20
    W90_f2 15.29 13.28 12.04 10.66 9.81 8.74 8.14
    下载: 导出CSV
  • [1] ZHANG W, JENELIUS E, MA X L. Freight transport platoon coordination and departure time scheduling under travel time uncertainty[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 98: 1-23. doi: 10.1016/j.tre.2016.11.008
    [2] 张泽锡, 钟文健, 林柏梁. 带时间窗的卡车编队路径优化[J]. 交通运输系统工程与信息, 2022, 22(5): 253-263.

    ZHANG X Z, ZHONG W J, LIN B L. Optimization of truck platooning routing with time windows[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(5): 253-263. (in Chinese)
    [3] FAGNANT D J, KOCKELMAN K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations[J]. Transportation Research Part A: Policy and Practice, 2015, 77: 167-181. doi: 10.1016/j.tra.2015.04.003
    [4] 胡笳, 安连华, 李欣. 面向新型混合交通流的快速路合流区通行能力建模[J]. 交通信息与安全. 2021, 39(1): 137-144. doi: 10.3963/j.jssn.1674-4861.2021.01.016

    HU J, AN L H, LI X. A capacity model of freeway merging areas with partially connected automated traffic[J]. Journal of Transport Information and Safety, 2021, 39(1): 137-144. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.01.016
    [5] BHOOPALAM A K, AGATZ N, ZUIDWIJK R. Planning of truck platoons: a literature review and directions for future research[J]. Transportation Research Part B: Methodological, 2018, 107: 212-228. doi: 10.1016/j.trb.2017.10.016
    [6] HUSSEIN A A, RAKHA H A. Vehicle platooning impact on drag coefficients and energy/fuel saving implications[J]. IEEE Transactions on Vehicular Technology, 2021, 71(2): 1199-1208.
    [7] TSUGAWA S, Results and issues of an automated truck platoon within the energy its project[C]. IEEE Intelligent Vehicles Symposium, Michigan, USA: IEEE, 2014.
    [8] NUSZKOWSKI J, SMITH H, MCKINNEY M, et al. Increasing the on-road fuel economy by trailing at a safe distance[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2017, 231(9): 1303-1311. doi: 10.1177/0954407017703233
    [9] HUMPHREYS H, BEVLY D. Computational fluid dynamic analysis of a generic 2 truck platoon[C]. Commercial Vehicle Engineering Congress, Illinois, USA: SAE, 2016.
    [10] 贺宝琴, 吴允柱, 傅立敏. 汽车外形对智能车辆队列行驶气动特性的影响[J]. 吉林大学学报(工学版), 2008, 38(1): 7-11.

    HE B Q, WU Y Z, HE L M. Influence of vehicle shape on the aerodynamic characteristics of intelligent vehicle platoon[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(1): 7-11. (in Chinese)
    [11] SONG M T, CHEN F, MA X X. Organization of autonomous truck platoon considering energy saving and pavement fatigue[J]. Transportation Research Part D: Transport and Environment, 2021, 90: 102667. doi: 10.1016/j.trd.2020.102667
    [12] RAJAMANI G. CFD analysis of air flow interactions in vehicle platoons[D]. Melbourne: RMIT University, 2006.
    [13] 张璐, 张兆磊, 刘至真, 等. 考虑智能网联汽车通信延时的混合交通流稳定性分析[J]. 交通信息与安全. 2024, 42(2): 95-104. doi: 10.3963/j.jssn.1674-4861.2024.02.010

    ZHANG L, ZHANG Z L, LIU Z Z, et al. A stability analysis of mixed traffic flows considering communication delay of connected and autonomous vehicles[J]. Journal of Transport Information and Safety, 2024, 42(2): 95-104. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.02.010
    [14] GUNGOR O E, AL-QADI I L. All for one: centralized optimization of truck platoons to improve roadway infrastructure sustainability[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 84-98. doi: 10.1016/j.trc.2020.02.002
    [15] CHEN F, SONG M T, MA X X, et al. Assess the impacts of different autonomous trucks' lateral control modes on asphalt pavement performance[J]. Transportation Research Part C: Emerging Technologies, 2019, 103: 17-29. doi: 10.1016/j.trc.2019.04.001
    [16] 张凯歌. 重型卡车气动性能优化与实验研究[D]. 长沙: 湖南大学, 2016.

    ZHANG K G. The aerodynamic performance optimization and experiment study of heavy-duty truck[D]. Changsha: Hunan University, 2016. (in Chinese)
    [17] 傅立敏, 贺宝琴, 吴允柱, 等. 队列行驶车辆间距对气动特性的影响[J]. 汽车工程, 2007, 29(5): 365-368. doi: 10.3321/j.issn:1000-680X.2007.05.001

    FU L M, HE B Q, WU Y Z, et al. The influence of inter-vehicle distance on aerodynamic characteristics of vehicle platoon[J]. Automotive Engineering, 2007, 29(5): 365-368. (in Chinese) doi: 10.3321/j.issn:1000-680X.2007.05.001
    [18] 宋明涛, 陈丰. 自动驾驶对沥青面层寿命及养护成本影响分析[J]. 中国公路学报, 2022, 35(10): 125-134. doi: 10.3969/j.issn.1001-7372.2022.10.012

    SONG M T, CHEN F. Influence of autonomous vehicles on service life and maintenance cost of asphalt pavements[J]. China Journal of Highway and Transport, 2022, 35(10): 125-134. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.10.012
    [19] 全国汽车标准化技术委员会. 重型商用车辆燃料消耗量测量方法: GB/T 27840-2021[S]. 北京: 中国标准出版社, 2019.

    National Technical Committee of Auto Standardization. Fuel consumption test methods for heavy-duty commercial vehicles: GB/T 27840-2021[S]. Beijing: Standards Press of China, 2019. (in Chinese)
    [20] 罗沂. 基于GPS数据的高速公路驾驶行为识别[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    LUO Y. Expressway driving behavior recognition based on GPS data[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [21] 中华人民共和国交通运输部. 公路路线设计规范: JTG D20-2017[S]. 北京: 人民交通出版社, 2017.

    Ministry of Transport of the People's Republic of China. Design specification for highway alignment: JTG D20-2017[S]. Beijing: China Communications Press, 2017. (in Chinese)
    [22] BONNET C, FRITZ H. Fuel consumption reduction experienced by two promote- chauffeur trucks in electronic towbar operation[C]. The 7th World Congress on Intelligent Systems, Turin, Italy: IEEE, 2000.
    [23] BROWAND F, MCARTHUR J, RADOVICH C. Fuel saving achieved in the field test of two tandem trucks[R]. California: University of Southern California, 2004.
    [24] TSUGAWA S. An overview on an automated truck platoon within the Energy ITS Project[J]. IFAC Proceedings Volumes, 2013, 46(21): 41-46. doi: 10.3182/20130904-4-JP-2042.00110
    [25] MATTHEW E, IVAN G J, RAJA S. Aerodynamic drag and engine cooling effects on class 8 trucks in platooning configurations[J]. SAE International Journal of Commercial Vehicles, 2015, 8(2): 732-739. doi: 10.4271/2015-01-2896
    [26] VEGENDLA P, SOFU T, SAHA R, et al. Investigation of aerodynamic influence on truck platooning[R]. Detroit: Society of Automotive Engineers, 2015.
    [27] BISHOP R, BEVLY D, HUMPHREYS L, et al. Evaluation and testing of driver-assistive truck platooning: Phase 2 final results[J]. Journal of the Transportation Research Board, 2017, 2615(1): 11-18. doi: 10.3141/2615-02
    [28] 孙立军. 铺面工程学[M]. 上海: 同济大学出版社, 2012.

    SUN L J. Pavement engineering[M]. Shanghai: Tongji University Press, 2012. (in Chinese)
    [29] CHEN F, SONG M T, MA X X. A lateral control scheme of autonomous vehicles considering pavement sustainability[J]. Journal of Cleaner Production, 2020, 256: 120669. doi: 10.1016/j.jclepro.2020.120669
    [30] NOORVAND H, KARNATI G, UNDERWOOD BS. Autonomous vehicles: assessment of the implications of truck positioning on flexible pavement performance and design[J]. Transportation Research Record, 2017, 2640: 21-28. doi: 10.3141/2640-03
    [31] AHMED SR, RAMM G, FAITIN G. Some salient features of the time-averaged ground vehicle wake[J]. SAE transactions. 1984, 473-503.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-03
  • 网络出版日期:  2025-06-27

目录

    /

    返回文章
    返回