A Study on Underground Garage Traffic Simulation and Optimization of Flow Lines
-
摘要: 多层大型地库车流量大且交通组织复杂,对交通流线设计与优化具有较高的要求。为提升车辆在地库中的通行效率并减少出库时间,研究了基于交通仿真分析的地库流线优化方法。基于多层大型地库路网,将地库车位与出口分别当作起点(origin,O)和终点(destination,D),构建分时段的OD需求数据,选取动态系统最优交通分配(dynamic system optimal,DSO)算法按照给定的流线设计方案对地库路网车流进行分配加载,并基于车流动态加载结果对流线设计方案进行评估。在流线优化过程中,优先考虑上下层的关键通道的流线设计形式(如单双向或上下行等),然后着重考虑地库出口附近的交通冲突,遵从交通冲突点越少越好的设计原则,最后将满足双向通行条件的路段改成双向通行,以增加路网通行能力。在数值实验中,针对北京市某商品房小区双层大型地库,使用城市交通能力仿真软件(simulation of urban mobility,SUMO)搭建地库微观交通仿真平台,并根据实际数据构造时变随机OD出库需求,通过仿真分析对比了流线设计方案优化前后的路网总旅行时间、出口总排队时间、关键拥堵路段的排队时间等,进一步仿真分析了流线优化方案在突发应急状况下(如出口数量变化、OD出库需求突增)的鲁棒性能。实验结果验证了流线优化方案有助于提升地库通行效率,并具有良好的应急能力。Abstract: Large-scale multi-level underground garages often experience high traffic volumes and complex traffic patterns. imposing high demands on the design and optimization of internal flowlines. To improve vehicle circulation efficiency and reduce exit delays, we propose a flowline optimization method based on traffic simulation. The road network of the garage is abstracted into an origin-destination (OD) model, with parking spaces and exits designated as origins and destinations, respectively. Time-dependent OD demand matrices are constructed and implemented within a dynamic system optimal (DSO) traffic assignment framework to simulate vehicle flow under different flowline configurations. Flowline design is evaluated based on dynamic traffic loading. Priority is given to organizing inter-level connections, particularly the directional use of ramps. Traffic conflict points near exits are reduced following the principle of minimizing interference. Road segments meeting criteria for two-way traffic are reconfigured to support bidirectional flow, enhancing overall network capacity. A case study was conducted on a two-level underground garage in a Beijing residential complex. A microscopic traffic simulation platform is developed using Simulation of Urban Mobility (SUMO), incorporating time-varying stochastic origin-destination demands generated from empirical data. Simulation results show that the proposed method significantly reduces total travel time, exit queue lengths, and congestion in critical sections. The robustness of the optimized flowline scheme is also validated under emergency conditions, including sudden changes in exit availability and unexpected increases in outbound demand. The results confirm that the proposed approach improves traffic efficiency and system resilience within underground garages.
-
表 1 车辆动力学参数设置
Table 1. Vehicle constraint parameter settings
车辆参数 取值 车辆参数 取值 宽度/m 1.8 启动延误/s 1 长度/m 4.5 前后车最小间距/m 2 最大加速度(/m/s2) 1.8 换道模型 LC2013 最大减速度/(m/s2) 2.5 跟驰模型 Krauss-model 最大时速(/m/s) 5 出入停车位额外花费时间/s 8 表 2 道路限速设置
Table 2. Road network constraint parameter settings
路段名称 限速/(m/s) 路段名称 限速/(m/s) 地下一层进口坡道、通向地下二层坡道(下坡) 3 连接地下一层(地下二层)进出口坡道路段 1 地下一层出口坡道、通向地下一层坡道(上坡) 2 单个交叉口周围紧邻路段 3 长直路段 5 交叉口间短路段、90度转弯路段 2 表 3 B1层关键上升通道流线方案对比
Table 3. Comparison of key riser flow options on level B1
方案 B1层(箭头表示南北行方向) Ⅰ Ⅱ Ⅲ #1方向数 #3方向数 #2、#4方向数 方向数合计 1 ↓ ↑ ↑ 4 2 2 8 2 ↓ ↑ ↓ 3 2 2 7 3 ↑ ↓ ↑ 4 3 2 9 4 ↑ ↓ ↓ 3 3 2 8 表 4 B2层关键上升通道流线方案对比
Table 4. Comparison of key rising channel flow options for level B2
方案 B2层(箭头表示南北行方向) Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ #1方向数 #3方向数 #2、#4方向数 方向数合计 1 ↑ ↑ ↑ ↓ ↑ 4 3 2 9 2 ↑ ↑ ↑ ↑ ↓ 4 4 2 1 3 ↑ ↑ ↓ ↑ ↑ 4 2 2 8 4 ↑ ↑ ↓ ↓ ↑ 4 1 2 7 5 ↑ ↑ ↓ ↑ ↓ 4 2 2 8 6 ↑ ↑ ↑ ↓ ↓ 4 3 2 9 12 ↑ ↓ ↓ ↓ ↑ 2 2 2 6 表 5 平均出库时间提升率对比
Table 5. Comparison of average outbound time rates
单位: % 车位编号 A B C D E F G H I #1 优化效果 2.1 1.9 0.2 0.3 42.1 1.8 0.2 0.3 0.2 #2 优化效果 73.4 41.4 70.2 63.9 64.3 43.1 51.7 58.5 61.9 #3 优化效果 49.1 81.5 53.3 34.2 81.6 48.1 23.1 23.2 27.2 #4 优化效果 71.9 48.9 64.7 59.3 74.9 46.7 32.2 51.4 33.8 -
[1] 李晓丽, 朱国庆. 法定节假日商业综合体人员滞留量研究[J]. 消防科学与技术, 2017, 36(11): 1626-1629.LI X L, ZHU G Q. Cause analysis and countermeasures of fire industrial enterprises[J]. Fire Science and Technology, 2017, 36(11): 1626-1629. (in Chinese) [2] 俞明健, 郭东军. 地下空间开发利用与城市交通—上海CBD核心区地下井字形通道[J]. 地下空间与工程学报, 2006(增刊1): 1227-1230, 1243.YU M J, GUO D J. Urban underground space development and urban traffic: form underground road network of CBD core area in Shanghai[J]. Journal of Underground Space and Engineering, 2006(S1): 1227-1230, 1243. (in Chinese) [3] BROERE W. Urban underground space: solving the problems of today's cities[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2016, 55: 245-248. http://www.xueshufan.com/publication/2211205654 [4] 王雨琪, 张月, 袁舒南, 等. "平安中国"背景下公共建筑地下车库安全性提升策略研究——以西安汉神地下车库为例[C]. 中国城市规划年会, 武汉: 中国城市规划学会, 2023.WANG Y Q, ZHANG Y, YUAN S N, et al. Research on the strategy of improving the safety of underground garages of public buildings in the context of'Safe China': taking Xi'an Hanshen underground garage as an example[C]. The Annual Conference on Urban Planning in China, Wuhan: China Society of Urban Planning, 2023 [5] 魏文博. 基于使用者需求的高层居住小区地下车库设计策略研究[D]. 哈尔冰: 哈尔滨理工大学, 2020.WEI W H. Research on the design strategy of underground garage of high-rise residential district based on users'needs[D]. harbin: Harbin Institute of Technology, 2020. (in Chinese) [6] 易磊, 吕麦霞. 西安北站地下停车场交通组织优化设计研究[J]. 工程技术研究, 2019, 4(9): 181-182.YI L, LYU M X. Research on optimisation design of traffic organisation of underground car park in Xi'an north station[J]. Engineering Technology Research, 2019, 4(9): 181-182. (in Chinese) [7] 王子驹. 地下车库的人性化体现分析[J]. 低碳世界, 2020, 10 (7): 90-91.WANG Z J. Analysis of humanisation embodiment of underground garage[J]. Low Carbon World, 2020, 10(7): 90-91. (in Chinese) [8] 薛方军. 地下车库设计中的问题探究[J]. 中国建设信息化, 2017(13): 69-71.XUE F J. Exploration of problems in underground garage design[J]. China construction Informatisation, 2017, (13): 69-71. (in Chinese) [9] 朱斌宁, 郑长江. 停车场对连接路段车辆速度的影响研究[J]. 华东交通大学学报, 2019, 36(1): 73-78.ZHU B N, ZHENG C J. Research on the influence of car parks on vehicle speed in connecting road sections[J]. Journal of East China Jiaotong University, 2019, 36(1): 73-78. (in Chinese) [10] 赵怀柏, 苏贵民. 地下停车场交通组织形式优化方法[J]. 交通与港航, 2020, 7(4): 55-63.ZHAO H B, SU G M. Optimization method of traffic organization in underground car parks[J]. Communication and Shipping, 2020, 7(4): 55-63. (in Chinese) [11] 潘少文. 珠三角地区商业综合体地下停车空间优化设计研究[D]. 广州: 华南理工大学, 2017.PAN S W. Research on optimal design of underground parking space for commercial complexes in the Pearl River Delta region[D]. Guangzhou: South China University of Technology, 2017. (in Chinese) [12] 任远然. 商业综合体地下停车场交通系统设置优化及评价研究[D]. 重庆: 重庆交通大学, 2022.REN Y R. Research on optimization and evaluation of traffic system setting of underground car park of commercial complex[D]. Chongqing: Chongqing Jiaotong University, 2022. (in Chinese) [13] William H.K. Lam, Zhi-Chun Li, Hai-Jun Huang, S.C. Wong. Modeling time-dependent travel choice problems in road networks with multiple user classes and multiple parking facilities[J]. Transportation Research Part B: Methodological, 2005, 40(5): 368-395. http://sem.buaa.edu.cn/teacher/papers/our%20tr-b%20paper.pdf [14] STOVER V G. Issues relating to the geometric design of intersections[C]. The 8th International Conference in ACCESS Management. Baltimore: Transportation Research Board, 2008. [15] De DIOS ORTÚZAR J, WILLUMSEN L G. Modelling transport[M]. 4th. J. Wiley, 2010: 606 [16] 陈先龙, 李锐波, 徐良. 基于动态交通分配的中观交通仿真模型开发实践[C]. 第三十三届中国仿真大会, 北京: 中国仿真学会, 2021CHEN X N, LI R B, XU L. Practice of mesoscopic traffic simulation based on dynamic traffic assignment[C]. The 33rd China Simulation Federation China Simulation Federation, 2021. (in Chinese) [17] 姜安培, 吴海俊, 赵慧. 基于双层模型与仿真的区域交通组织优化研究[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(6): 1008-1012.JIANG A P, WU H J, ZHAO H. Regional traffic organization optimization based on a bilevel model and simulation[J]. Journal of Wuhan University of Technology(Transportation Science and Engineering Edition), 2022, 46(6): 1008-1012. (in Chinese) [18] 龙建成, 郭嘉琪. 动态交通分配问题研究回顾与展望[J]. 交通运输系统工程与信息, 2021, 21(5): 125-138.LONG J C, GUO J Q. A review and outlook of dynamic traffic assignment[J]. Journal of Traffic and Transportation Systems Engineering and Information, 2021, 21(5): 125-138. (in Chinese) [19] 王金栋, 应坚国. 基于SUMO仿真的停车场车辆离场智慧管控策略[J]. 武汉理工大学学报(交通科学与工程版), 2023, 47(4): 615-619.WANG J D, YING J G. Intelligent control strategy for car park vehicle departure based on SUMO simulation[J]. Journal of Wuhan University of Technology(Transportation Science and Engineering Edition), 2023, 47(4): 615-619. (in Chinese) [20] 甄云竹, 康金龙, 李英帅, 等. 地下停车场交通诱导信息设置优化[J]. Open Journal of Transportation Technologies, 2021, 10: 511.ZHEN Y Z, KANG J L, LI Y S, et al. Optimisation of traffic-inducing information settings for underground car parks[J]. Open Journal of Transportation Technolo-gies, 2021, 10: 511. (in Chinese) [21] 李君羡. 停车场内场交通仿真模型的建立及评价[J]. 交通科学与工程, 2017, 33(2): 85-91.LI J X. Establishment and evaluation of car parkinfield traffic simulation model[J]. Transportation Science and Engineering, 2017, 33(2): 85-91. (in Chinese) [22] 中华人民共和国住房和城乡建设部. 城市地下道路工程设计规范: CJJ 221-201[S]. 北京: 中国建筑工业出版社, 2015Ministry of Housing and Urban-Rural Development, People's Republic of China. Urban underground road engineering design specification: CJJ 221-201[S]. Beijing: China Construction Industry Press, 2015(in Chinese) -