留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于队列调度算法的民机驾驶舱人机功能分配模型

任波西 孙有朝 刘威成 曾喆 曾一宁

任波西, 孙有朝, 刘威成, 曾喆, 曾一宁. 基于队列调度算法的民机驾驶舱人机功能分配模型[J]. 交通信息与安全, 2025, 43(1): 107-119. doi: 10.3963/j.jssn.1674-4861.2025.01.010
引用本文: 任波西, 孙有朝, 刘威成, 曾喆, 曾一宁. 基于队列调度算法的民机驾驶舱人机功能分配模型[J]. 交通信息与安全, 2025, 43(1): 107-119. doi: 10.3963/j.jssn.1674-4861.2025.01.010
REN Boxi, SUN Youchao, LIU Weicheng, ZENG Zhe, ZENG Yining. A Human Machine Function Allocation Model Based on Queue Scheduling Algorithm in the Cockpit of a Civil Aircraf[J]. Journal of Transport Information and Safety, 2025, 43(1): 107-119. doi: 10.3963/j.jssn.1674-4861.2025.01.010
Citation: REN Boxi, SUN Youchao, LIU Weicheng, ZENG Zhe, ZENG Yining. A Human Machine Function Allocation Model Based on Queue Scheduling Algorithm in the Cockpit of a Civil Aircraf[J]. Journal of Transport Information and Safety, 2025, 43(1): 107-119. doi: 10.3963/j.jssn.1674-4861.2025.01.010

基于队列调度算法的民机驾驶舱人机功能分配模型

doi: 10.3963/j.jssn.1674-4861.2025.01.010
基金项目: 

国家自然科学基金项目 52172387

国家自然科学基金民航联合基金项目 U2033202

国家自然科学基金民航联合基金项目 U1333119

中央高校基本科研业务费 ILA22032-1A

航空科学基金项目 2022Z071052001

南京航空航天大学研究生科研与实践创新计划 xcxjh20230728

南京航空航天大学研究生科研与实践创新计划 xcxjh20230729

详细信息
    作者简介:

    任波西(2000—),硕士研究生. 研究方向:交通运输. E-mail: 13688516902@nuaa.edu.cn

    通讯作者:

    孙有朝(1964—),博士,教授. 研究方向:飞机虚拟设计技术、航空器可靠性工程等. E-mail: sunyc@nuaa.edu.cn

  • 中图分类号: V19

A Human Machine Function Allocation Model Based on Queue Scheduling Algorithm in the Cockpit of a Civil Aircraf

  • 摘要: 针对飞机驾驶舱人机系统(aircraft cockpit human-machine system,ACHMS)高复杂性导致飞行员信息流负载越来越高的现实问题,研究了基于队列调度算法的驾驶舱人机功能分配方法。基于熵值法量化了飞行任务流程操作复杂度与人机交互过程飞行员资源需求复杂度,提出了1种融合时空动态影响因子的飞行员信息流负载强度量化方法,并将信息流负载强度计算结果作为信息交互网络的有向边权重和信息流调度的依据,旨在通过网络的形式直观地描述飞行员与驾驶舱人机接口间的信息流通过程与信息流耦合作用关系。基于ACHMS和计算机操作系统的映射关系,扩展了加权轮询调度(weighted round robin,WRR)算法的串行调度机制,建立了基于队列权重的认知资源差异化分配与信息流入队调度机制,提出了基于改进WRR算法的驾驶舱人机功能分配策略。以波音737起飞任务作为分析案例,对起飞任务全过程进行信息流提取,建立了起飞过程人机耦合信息交互网络,利用改进WRR算法调度信息流并触发人机功能分配,最后对人机功能分配前后网络性能进行评估,结果显示:人机功能分配后,飞行员节点接近中心性提高了4.82倍、介数中心性提高了0.47%,网络鲁棒性提高了4.24倍,飞行员节点信息流负载强度最大降幅为86.8%,信息流耦合度最大降幅为93.5%,表明该模型能够对ACHMS功能进行有效分配,并辅助降低关键时刻飞行员信息流负载,提高飞行安全性。

     

  • 图  1  ACHMS与计算机操作系统调度流程对比

    Figure  1.  Comparison of ACHMS and computer operating system scheduling processes

    图  2  WRR算法工作流程

    Figure  2.  WRR algorithm workflow

    图  3  改进WRR算法工作流程

    Figure  3.  Improved WRR algorithm workflow

    图  4  起飞任务飞行员信息流时序图

    Figure  4.  Timing diagram of pilot information flow for take-off missions

    图  5  “滑行程序”动作控制图

    Figure  5.  "Taxi process" motion control diagram

    图  6  “滑行程序”资源需求结构图

    Figure  6.  "Taxi process" structural diagram of resource requirements

    图  7  起飞任务人机耦合信息交互网络

    Figure  7.  Human-machine coupled information interaction network for take-off missions

    图  8  人机功能分配前后飞行员节点信息流负载强度对比

    Figure  8.  Comparison of pilot node information flow load intensity before and after human machine function allocation

    图  9  人机功能分配前后信息流耦合度对比

    Figure  9.  Comparison of information flow coupling degree before and after human machine function allocation

    表  1  ACHMS自动化等级划分

    Table  1.   ACHMS level of automation classification

    系统自动化等级 任务承担情况 飞行员任务比重/%
    1 飞行员独立执行所有子功能 100
    2 飞机系统提供基本的感知辅助,飞行员仍需独立决策和执行 90
    3 飞机系统自动感知飞行状态,飞行员根据系统提供的信息做出决策并执行 80
    4 飞机系统自动感知并提供决策建议,飞行员确认后执行操作 60
    5 飞机系统自动感知和决策,飞行员负责执行 50
    6 飞机系统独立感知和决策,自动执行操作,飞行员负责监控,并在必要时干预 30
    7 飞机系统独立执行所有子功能 0
    下载: 导出CSV

    表  2  操作逻辑复杂度节点分类情况

    Table  2.   Operational logic complexity node classification case

    节点 节点输入数 节点输出数 节点数量占比
    A 0 1 1/11
    B、C、E、F、H、I、J 1 1 7/11
    D 1 2 1/11
    G 2 1 1/11
    K 1 0 1/11
    下载: 导出CSV

    表  3  操作步长复杂度节点分类情况

    Table  3.   Operational step complexity node classification case

    节点 邻居节点 节点数量占比
    A B 1/11
    B A、C 1/11
    C B、D 1/11
    D F、C、E 1/11
    E、F D、G 2/11
    G F、H、E 1/11
    H I、G 1/11
    I J、H 1/11
    J I、K 1/11
    K J 1/11
    下载: 导出CSV

    表  4  RDC节点分类情况

    Table  4.   RDC node classification case

    节点 节点输入数 节点输出数 节点数量占比
    A 10 11 1/2
    B 10 9 1/2
    下载: 导出CSV

    表  5  起飞任务子程序信息流负载强度权重因子计算结果

    Table  5.   Take-off task subroutine information flow load intensity weighting factor calculation results

    起飞任务子程序 权重因子
    驾驶舱准备程序 1.858 1
    推出程序 1.029 3
    开车程序 3.130 2
    滑行程序 2.347 8
    起飞程序 4.020 1
    下载: 导出CSV

    表  6  “滑行程序”相关人机接口信息量

    Table  6.   Amount of information on the human-machine interface related to the "taxi process"

    人机接口 信息量
    外部灯开关 1 bit/次
    停机刹车手柄 1 bit/次
    油门杆 log26bit
    襟翼手柄 1 bit/次
    发动机启动和点火面板 1 bit/次
    MCP面板 1 bit/次
    TCAS面板 1 bit/次
    气象雷达控制面板 1 bit/次
    后缘襟翼指示仪表 1 bit
    下载: 导出CSV

    表  7  “滑行程序”信息流负载强度

    Table  7.   "Taxi process" information flow load intensity

    信息流 信息流负载强度
    滑行灯打开 6.591 1
    停留刹车松开 6.591 1
    柔和增加推力 17.037 8
    襟翼手柄放到5位 6.591 1
    核实手柄位置、指示器指示一致 13.182 3
    内侧着陆灯打开、固定着陆灯打开 6.591 1
    启动电门连续位 6.591 1
    频闪灯打开 6.591 1
    自动油门预位 6.591 1
    应答机打开 6.591 1
    气象雷达打开 6.591 1
    下载: 导出CSV

    表  8  过载时刻信息流调度结果

    Table  8.   Information flow scheduling results at the moment of overload

    时刻 信息流 过载量
    47 加油门至N1 4.695 0
    监控V1、VR 16.934 1
    50 核实高度与速度① 8.116 5
    51 VR时柔和地以2.5~3 °/s的速率抬机头 4.695 0
    核实高度与速度① 25.251 3
    52 核实高度与速度② 8.116 5
    53 VR时柔和地以2.5~3 °/s的速率抬机头 4.695 0
    核实高度与速度② 25.251 3
    下载: 导出CSV

    表  9  起飞任务ACHMS人机功能分配方案

    Table  9.   ACHMS human machine function allocation programme for take-off missions

    时刻 信息流 自动化等级调整情况
    47 加油门至N1 飞行员可继续自行执行,需要时飞机系统可进行协助执行,自动化等级由“1”调整到“2”
    监控V1、VR 飞行员视觉资源需求过高,飞机系统需给予适当辅助提示,自动化等级由“1”调整到“4”
    50 核实高度与速度① 飞行员脑力资源和视觉资源需求轻微过载,飞机系统可向飞行员提供一些优化后的执行方案,飞行员需选择其中1个方案,自动化等级由“1”调整到“3”
    51 VR时柔和地以2.5~3 °/s的速率抬机头 飞行员可继续自行执行,需要时飞机系统可进行协助执行,自动化等级由“1”调整到“2”
    核实高度与速度① 飞行员脑力资源和视觉资源需求重度过载,PFD的监控工作直接交由飞机系统执行,自动化等级由“1”调整到“5”
    52 核实高度与速度② 飞行员脑力资源和视觉资源需求轻微过载,飞机系统可向飞行员提供一些优化后的执行方案,飞行员需选择其中1个方案,自动化等级由“1”调整到“3”
    53 VR时柔和地以2.5~3 °/s的速率抬机头 飞行员可继续自行执行,需要时飞机系统可进行协助执行,自动化等级由“1”调整到“2”
    核实高度与速度② 飞行员脑力资源和视觉资源需求重度过载,PFD的监控工作直接交由飞机系统执行,自动化等级由“1”调整到“5”
    下载: 导出CSV

    表  10  人机功能分配前后网络性能对比

    Table  10.   Comparison of network performance before and after human machine function allocation

    性能指标 人机功能分配前 人机功能分配后
    飞行员节点接近中心性 0.000 924 6 0.004 461
    飞行员节点介数中心性 0.279 2 0.280 5
    网络密度 0.020 46 0.020 46
    网络鲁棒性 0.002 560 0.0108 5
    下载: 导出CSV
  • [1] 王菲茵, 袁锦彤, 汪磊. 典型机型冲偏出跑道耦合故障模式及风险建模[J]. 交通信息与安全, 2023, 41(6): 42-50. doi: 10.3963/j.jssn.1674-4861.2023.06.005

    WANG F Y, YUANG J T, WANG L. Coupling failure mode and risk modeling of typical aircrafts runway excursion[J]. Journal of Transport Information and Safety, 2023, 41(6): 42-50. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.06.005
    [2] Boeing. Statistical summary of commercial jet airplane accidents worldwide operations 1959-2019[R]. Washington, D.C. : Boing Company, 2020.
    [3] 王文跃, 王刚, 靳捷, 等. 基于模型的载人月球探测人机功能分配方法研究[J]. 载人航天, 2024, 30(5): 684-692. doi: 10.3969/j.issn.1674-5825.2024.05.016

    WANG W Y, WANG G, JIN J. Research on model-based human-machine function allocation method for manned lunar exploration[J]. Manned Spaceflight, 2024, 30(5): 684-692. (in Chinese) doi: 10.3969/j.issn.1674-5825.2024.05.016
    [4] ATASHFESHAN N, SAIDI-MEHRABAD M, RAZAVI H. A novel dynamic function allocation method in human-machine systems focusing on trigger mechanism and allocation strategy[J]. Reliability Engineering & System Safety, 2021, 207: 107337.
    [5] WANG Q, WAN Y, FENG F, et al. Threshold optimization of task allocation models in human-machine collaborative scoring of subjective assignments[J]. Computers & Industrial Engineering, 2024, 188: 109923.
    [6] HOGENBOOM S, ROKSETH B, VINNEM J E, et al. Human reliability and the impact of control function allocation in the design of dynamic positioning systems[J]. Reliability Engineering & System Safety, 2020, 194: 106340.
    [7] XIAO Y, YANG S, XU Z, et al. A human-machine collaboration frame in daylighting optimization of semi-outdoor space design by using phased synergistic method: a case study[J]. Journal of Building Engineering, 2023, 79: 107879. doi: 10.1016/j.jobe.2023.107879
    [8] BERNABEI M, COSTANTINO F. Design a dynamic automation system to adaptively allocate functions between humans and machines[J]. IFAC-PapersOnLine, 2023, 56(2): 3528-3533. doi: 10.1016/j.ifacol.2023.10.1509
    [9] ZHANG Y, LU J, XIA G, et al. Human-machine shared control for industrial vehicles: a personalized driver behavior recognition and authority allocation scheme[J]. IEEE Transactions on Intelligent Vehicles, 2024: 1-12.
    [10] WANG H, FENG L, ZHANG Y, et al. Human-machine authority allocation in indirect cooperative shared steering control with TD3 reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 7576-7588. doi: 10.1109/TVT.2024.3352047
    [11] XIN Y, KAM K H, Qinbiao L I, et al. Exploring the human-centric interaction paradigm: augmented reality-assisted head-up display design for collaborative human-machine interface in cockpit[J]. Advanced Engineering Informatics, 2024, 62: 102656. doi: 10.1016/j.aei.2024.102656
    [12] REN M, CHEN N, QIU H. Human-machine collaborative decision-making: an evolutionary roadmap based on cognitive intelligence[J]. International Journal of Social Robotics, 2023, 15(7): 1101-1114. doi: 10.1007/s12369-023-01020-1
    [13] 王东. 基于信息流和控制流的飞行员工作负荷研究[D]. 上海: 上海交通大学, 2013.

    WANG D. Pilot workload research based on information and control flow[D]. Shanghai: Shanghai Jiao Tong University, 2013. (in Chinese)
    [14] 郑弋源. 民用飞机驾驶舱人机交互机理与评价方法研究[D]. 上海: 上海交通大学, 2015.

    ZHENG Y Y. Human machine interaction mechanism and measurement in commercial aircraft flight deck[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
    [15] 刘承平, 肖旭, 赵竞全. 基于认知过程的飞行员脑力负荷动态预测[J]. 北京航空航天大学学报, 2023, 49(11): 2921-2928.

    LIU C P, XIAO X, ZHAO J Q. Pilots'mental workload dynamic prediction based on cognitive process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(11): 2921-2928. (in Chinese)
    [16] SOCHA V, SOCHA L, HANAKOVA L, et al. Pilots'performance and workload assessment: transition from analogue to glass-cockpit[J]. Applied Sciences, 2020, 10(15): 5211. doi: 10.3390/app10155211
    [17] NIU K, FANG W, SONG Q, et al. An evaluation method for emergency procedures in automatic metro based on complexity[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 22(1): 370-383.
    [18] PARK J, JUNG W, HA J. Development of the step complexity measure for emergency operating procedures using entropy concepts[J]. Reliability Engineering & System Safety, 2001, 71: 115-130.
    [19] PARASURAMAN R, SHERIDAN T B, WICKENS C D. A model for types and levels of human interaction with automation[J]. IEEE Transactions on systems, man, and cybernetics-Part A: Systems and Humans, 2000, 30(3): 286-297.
    [20] ZHANG A, BI W, TANG Z, et al. Human-machine function allocation method for aircraft cockpit based on interval 2-tuple linguistic information[J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1291-1302.
    [21] 孙丽, 孙有朝. 基于负荷均衡的飞机驾驶舱动态功能分配[J]. 测控技术, 2022, 41(1): 11-15, 27.

    SUN L, SUN Y C. Dynamic function allocation of flight deck based on load balancing[J]. Measurement & Control Technology, 2022, 41(1): 11-15, 27. (in Chinese)
    [22] ZHAN T, ZHOU J, LI Z, et al. Generalized information entropy and generalized information dimension[J]. Chaos, Solitons & Fractals, 2024, 184: 114976.
    [23] ZHANG X, SUN Y, ZHANG Y. A task modeling method of intelligent human-computer interaction in aircraft cockpits based on information load flow[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5619-5634.
    [24] SKIBSKI O. Closeness centrality via the condorcet principle[J]. Social Networks, 2023, 74: 13-18.
    [25] MLIN R, LI C, QIU Y, et al. Can high-speed rail promote regional technological innovation? An explanation based on city network centrality[J]. Research in Transportation Business & Management, 2024, 57: 101245.
    [26] GHUANG S, WANG P, HUA Z, et al. Structural characteristics and spatiotemporal changes of a reticular river network based on complex network theory[J]. Journal of Hydrology, 2024, 638: 131577.
    [27] LIU J, ZHOU M, WANG S, et al. A comparative study of network robustness measures[J]. Frontiers of Computer Science, 2017, 11(4): 568-584.
    [28] 赖金志. 队列调度算法的研究与逻辑实现[D]. 西安: 西安电子科技大学, 2009

    LAI J Z. Research and design of queue scheduling algorithm. [D]. Xi'an: Xidian University, 2009. (in Chinese)
    [29] 李秉权, 张松, 王兆伟, 等. WFQ与WRR调度算法的性能分析与改进[J]. 北京理工大学学报, 2015, 35(3): 316-320.

    LI B Q, ZHANG S, WANG Z W, et al. Performance analysis and improvement about WFQ and WRR schedule algorithm[J]. Transactions of Beijing Institute of Technology, 2015, 35(3): 316-320. (in Chinese)
    [30] International Civil Aviation Organization. Safety Report 2023[R]. Montréal: International Civil Aviation Organization, 2024.
    [31] SCHVANEVELDT R W, BERINGER D B, LAMONICA J A. Priority and organization of information accessed by pilots in various phases of flight[J]. The International Journal of Aviation Psychology, 2001, 11(3): 253-280.
    [32] JIN H, HU Z, LI K, et al. Study on how expert and novice pilots can distribute their visual attention to improve flight performance[J]. IEEE Access, 2021, 9: 44757-44769.
    [33] 中国人民解放军总装备部. 歼击机飞行员脑力负荷评价模型: GJB 5204-2004[S]. 北京: 总装备部军标出版发行部, 2004.

    General Armaments Department of the People's Libe. Model for evaluation of mental workload of fighter pilots: GJB 5204-2004[S]. Beijing: General Equipment Department Military Standard Publishing and Distribution Department, 2004. (in Chinese)
  • 加载中
图(9) / 表(10)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-04
  • 网络出版日期:  2025-06-27

目录

    /

    返回文章
    返回