留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于障碍车辆轨迹预测的驾驶碰撞风险模型

杨厚新 陆丽萍 秦恒 杨奥 褚端峰

杨厚新, 陆丽萍, 秦恒, 杨奥, 褚端峰. 基于障碍车辆轨迹预测的驾驶碰撞风险模型[J]. 交通信息与安全, 2025, 43(1): 42-51. doi: 10.3963/j.jssn.1674-4861.2025.01.004
引用本文: 杨厚新, 陆丽萍, 秦恒, 杨奥, 褚端峰. 基于障碍车辆轨迹预测的驾驶碰撞风险模型[J]. 交通信息与安全, 2025, 43(1): 42-51. doi: 10.3963/j.jssn.1674-4861.2025.01.004
YANG Houxin, LU Liping, QIN Heng, YANG Ao, CHU Duanfeng. Driving Collision Risk Modeling with Trajectory Prediction of Obstacle Vehicles[J]. Journal of Transport Information and Safety, 2025, 43(1): 42-51. doi: 10.3963/j.jssn.1674-4861.2025.01.004
Citation: YANG Houxin, LU Liping, QIN Heng, YANG Ao, CHU Duanfeng. Driving Collision Risk Modeling with Trajectory Prediction of Obstacle Vehicles[J]. Journal of Transport Information and Safety, 2025, 43(1): 42-51. doi: 10.3963/j.jssn.1674-4861.2025.01.004

基于障碍车辆轨迹预测的驾驶碰撞风险模型

doi: 10.3963/j.jssn.1674-4861.2025.01.004
基金项目: 

国家自然科学基金面上项目 52172392

湖北省交通运输厅科技项目 2023-121-3-2

详细信息
    作者简介:

    杨厚新(1968—),本科,高级工程师. 研究方向:交通运输行业信息化研究. E-mail:331011781@qq.com

    通讯作者:

    陆丽萍(1977—),博士,副教授. 研究方向:无人驾驶技术. E-mail:luliping@whut.edu.cn

  • 中图分类号: U471.15

Driving Collision Risk Modeling with Trajectory Prediction of Obstacle Vehicles

  • 摘要: 针对智能驾驶系统在驾驶风险预警中存在的动态交互特征捕捉不足、多模态轨迹预测精度有限以及碰撞风险量化物理指标过度单一等问题,研究了基于多模态轨迹预测与概率量化耦合的预见性碰撞风险评估模型。在轨迹预测部分,研究了分层图注意力网络,通过图注意力机制融合高精地图、车道线以及车辆历史轨迹特征,能够有效捕捉车辆行驶环境中的动态变化;针对传统模型中先预测再细化的两阶段解码结构,引入滑动窗口优化解码器,能够准确预测临近车辆的未来轨迹。在碰撞风险评估部分,研究了1种基于概率量化的碰撞风险评估方法,通过结合预测的未来轨迹与碰撞风险,估算自车与周边车辆发生碰撞的概率,实现对车辆危险行为的提前预警。实验结果表明:在Argoverse数据集上最小终点位移误差、最小平均位移误差和漏检率分别为0.785、1.157和0.126,与HiVT与LaneGCN相比,在终点预测方面误差分别减少了1%和15.1%。在城市交通能力仿真软件(simulation of urban mobility,SUMO)上验证预测风险与实际风险的偏差约为5%,从数据波动性上看,危险程度波动幅度为0.3,与碰撞时间(time to collision,TTC)方法和动态安全指数(dynamic safety index,DSI)方法相比,波动幅度分别减少33.3%和18.75%,在持续驾驶场景中展现出更优秀的风险评估水准;证明了基于障碍车辆轨迹预测的驾驶碰撞风险模型在预测未来潜在驾驶风险的准确性。

     

  • 图  1  分段轨迹预测网络

    Figure  1.  Segmented trajectory prediction network

    图  2  编码部分

    Figure  2.  Encoding section

    图  3  风险来源车辆的局部坐标系

    Figure  3.  Local coordinate system of risk source vehicles

    图  4  临界碰撞距离OAOB'

    Figure  4.  Critical collision distance OAOB'

    图  5  计算示例

    Figure  5.  Calculation example

    图  6  示例场景

    Figure  6.  Example scenario

    图  7  示例场景对应的碰撞风险指数CRIt

    Figure  7.  The collision risk index corresponding to the example scenario

    图  8  跟车场景中2车速度与相对距离

    Figure  8.  The speed and relative distance of two cars in the following scene

    图  9  跟车场景中的碰撞概率与碰撞风险指数

    Figure  9.  Collision probability and collision risk index in following scenarios

    图  10  跟车场景下不同碰撞风险评估方法的对比图

    Figure  10.  Comparison diagram of different collision risk assessment methods in car following scenarios

    图  11  跟车场景下与DSI方法的对比图

    Figure  11.  Comparison with the DSI method in a car-following scenario.

    图  12  切入场景各车速度与距离

    Figure  12.  Cutting into the scene, the speed and distance of each vehicle

    图  13  切入场景下不同碰撞风险评估方法的对比图

    Figure  13.  Comparison diagram of different collision risk assessment methods in different scenarios

    图  14  切入场景下不同碰撞风险评估方法的对比图

    Figure  14.  Comparison diagram of different collision risk assessment methods in different scenarios

    表  1  不同模型在Argoverse测试集中的结果对比

    Table  1.   Comparison of results of different methods in the argverse test set  单位: m

    模型名 minADE6 minFDE6 MR6
    LaneGCN[4] 0.870 1.362 0.168
    DenseTNT[3] 0.882 1.282 0.126
    SSL-Lanes[5] 0.840 1.249 0.132
    TPCN[20] 0.815 1.244 0.133
    HiVT[6] 0.774 1.169 0.127
    本文模型 0.785 1.157 0.126
    下载: 导出CSV
  • [1] JIYANG G, CHEN S, HANG Z, et al. VectorNet: encoding HD maps and agent dynamics from vectorized representation[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, USA: IEEE, 2020.
    [2] ZHAO H, GAO J, LAN T, et al. Tnt: Target-driven trajectory prediction[C]. Conference on Robot Learning, London, UK: PMLR, 2021.
    [3] GU J, SUN C, ZHAO H. Densetnt: end-to-end trajectory prediction from dense goal sets[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada: IEEE, 2021.
    [4] LIANG M, YANG B, HU R, et al. Learning lane graph representations for motion forecasting[C]. 16th European Conference, Glasgow, UK: ECCV, 2020.
    [5] BHATTACHARYYA P, HUANG C, CZARNECKI K. Ssl-lanes: self-supervised learning for motion forecasting in autonomous driving[C]. Conference on Robot Learning, Seoul, Korea: PMLR, 2023.
    [6] ZHOU Z, YE L, WANG J, et al. Hivt: hierarchical vector transformer for multi-agent motion prediction[C]. The IEEE/ CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA : IEEE, 2022.
    [7] FAHMY H M, ABD EL GHANY M A, BAUMANN G. Vehicle risk assessment and control for lane-keeping and collision avoidance at low-speed and high-speed scenarios[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (6): 4806-4818. doi: 10.1109/TVT.2018.2807796
    [8] WU B, YAN Y, NI D, et al. A longitudinal car-following risk assessment model based on risk field theory for autonomous vehicles[J]. International Journal of Transportation Science and Technology, 2021, 10(1): 60-68. doi: 10.1016/j.ijtst.2020.05.005
    [9] CHIA W M D, KEOH S L, MICHALA A L, et al. Real-time recursive risk assessment framework for autonomous vehicle operations[C]. 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland: IEEE, 2021.
    [10] 王建强, 吴剑, 李洋. 基于人-车-路协同的行车风险场概念、原理及建模[J]. 中国公路学报, 2016(1): 105-114.

    WANG J Q, WU J, LI Y. Concept, principle and modeling of driving risk field based on driver-vehicle-road interaction[J]. China Journal of Highway and Transport, 2016(1): 105-114. (in Chinese)
    [11] LI L, GAN J, ZHOU K, et al. A novel lane-changing model of connected and automated vehicles: using the safety potential field theory[J]. Physica A: Statistical Mechanics and its Applications, 2020, 559: 125039. doi: 10.1016/j.physa.2020.125039
    [12] 田野, 裴华鑫, 晏松, 等. 车路协同环境下行车风险场模型的扩展与应用[J]. 清华大学学报(自然科学版), 2022 (3): 447-457.

    TIAN Y, PEI H X, YAN S, et al. Extended driving risk field model for i-VICS and its application[J]. Journal of Tsinghua University(Science and Technology), 2022(3): 447-457. (in Chinese)
    [13] KATRAKAZAS C, QUDDUS M, CHEN W H. A new integrated collision risk assessment methodology for autonomous vehicles[J]. Accident Analysis & Prevention, 2019, 127: 61-79.
    [14] LEDENT P, PAIGWAR A, RENZAGLIA A, et al. Formal validation of probabilistic collision risk estimation for autonomous driving[C]. 9th IEEE International Conference on Cybernetics and Intelligent SystemsRobotics, Automation and Mechatronics(RAM), Bangkok, Thailand: IEEE, 2019.
    [15] STRICKLAND M, FAINEKOS G, AMOR H B. Deep predictive models for collision risk assessment in autonomous driving[C]. 2018 IEEE International Conference on Robotics and Automation(ICRA), Brisbane, Australia: IEEE, 2018.
    [16] 汪磊, 李蕊君, 王菲茵. 基于QAR数据与互信息法的进近风险评估模型[J]. 交通信息与安全, 2024, 42(4): 21-29, 41. doi: 10.3963/j.jssn.1674-4861.2024.04.003

    WANG Q, LI R J, WANG F Y. Approach risk assessment model based on QAR data and mutual information method[J]. Journal of Transport Information and Safety, 2024, 42(4): 21-29, 41. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.04.003
    [17] 赵睿, 李云, 胡宏宇, 等. 基于V2I通信的交叉口车辆碰撞预警方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1019-1029.

    ZHAO R, LI Y, HU H Y, et al. Vehicle collision warning method at intersection based on V2I communication[J]. Journal of Jilin University(Engineering Science), 2023, 53(4): 1019-1029. (in Chinese)
    [18] KRAMER B, NEUROHR C, BÜKER M, et al. Identification and quantification of hazardous scenarios for automated driving[C]. 7th International Symposium on Model-based Safety and assessment. Cham, Germany: Springer International Publishing, 2020.
    [19] CHANG M F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D tracking and forecasting with rich maps[C]. The IEEE/CVF conference on computer vision and pattern recognition, Long Beach, USA: IEEE, 2019.
    [20] YE M, CAO T, CHEN Q. Tpcn: temporal point cloud net-works for motion forecasting[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition: IEEE, 2021.
    [21] 褚端峰, 彭赛骞, 胡海洋, 等. 预见性驾驶风险场模型[J]. 机械工程学报, 2024, 60(10): 160-170.

    CHU D F, PENG S Q, HU H Y, et al. Predictive driving risk field model[J]. Journal of Mechanical Engineering, 2024, 60(10): 160-170. (in Chinese)
    [22] LOPEZ A, PABLO, BEHRISCH, et al. Microscopic traffic simulation using sumo[C]. 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, Hawaii, USA: IEEE, 2018.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  14
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-18
  • 网络出版日期:  2025-06-27

目录

    /

    返回文章
    返回