Driving Collision Risk Modeling with Trajectory Prediction of Obstacle Vehicles
-
摘要: 针对智能驾驶系统在驾驶风险预警中存在的动态交互特征捕捉不足、多模态轨迹预测精度有限以及碰撞风险量化物理指标过度单一等问题,研究了基于多模态轨迹预测与概率量化耦合的预见性碰撞风险评估模型。在轨迹预测部分,研究了分层图注意力网络,通过图注意力机制融合高精地图、车道线以及车辆历史轨迹特征,能够有效捕捉车辆行驶环境中的动态变化;针对传统模型中先预测再细化的两阶段解码结构,引入滑动窗口优化解码器,能够准确预测临近车辆的未来轨迹。在碰撞风险评估部分,研究了1种基于概率量化的碰撞风险评估方法,通过结合预测的未来轨迹与碰撞风险,估算自车与周边车辆发生碰撞的概率,实现对车辆危险行为的提前预警。实验结果表明:在Argoverse数据集上最小终点位移误差、最小平均位移误差和漏检率分别为0.785、1.157和0.126,与HiVT与LaneGCN相比,在终点预测方面误差分别减少了1%和15.1%。在城市交通能力仿真软件(simulation of urban mobility,SUMO)上验证预测风险与实际风险的偏差约为5%,从数据波动性上看,危险程度波动幅度为0.3,与碰撞时间(time to collision,TTC)方法和动态安全指数(dynamic safety index,DSI)方法相比,波动幅度分别减少33.3%和18.75%,在持续驾驶场景中展现出更优秀的风险评估水准;证明了基于障碍车辆轨迹预测的驾驶碰撞风险模型在预测未来潜在驾驶风险的准确性。Abstract: In order to address critical challenges in intelligent driving systems, including insufficient dynamic interaction modeling, limited accuracy in multimodal trajectory prediction, and over-reliance on single physical metrics for collision risk quantification. A proactive collision risk assessment framework is proposed by integrating probabilistic quantification with multimodal trajectory prediction. For trajectory prediction, a hierarchical graph attention network is developed to capture dynamic environmental features through adaptive fusion of high-definition maps, lane geometries, and vehicle motion history. A sliding window-optimized decoder is introduced within the conventional two-stage prediction architecture to refine trajectory outputs. For risk assessment, a probabilistic collision quantification method is designed to calculate collision likelihood between ego and surrounding vehicles based on predicted trajectories. Results on the Argoverse dataset demonstrate state-of-the-art performance with minimum final displacement error (=0.785), average displacement error (=1.157), and miss rate (=0.126), achieving 1% and 15.1% error reduction in endpoint prediction compared to HiVT and LaneGCN respectively. simulation of urban mobility, SUMO simulations reveal 5% deviation between predicted and actual risks, with risk fluctuation amplitude reduced by 33.3% and 18.75% against time to collision (TTC) and dynamic safety index (DSI) methods. The proposed model shows enhanced stability in continuous driving scenarios (risk fluctuation=0.3) and demonstrates superior accuracy in forecasting potential collision risks through systematic integration of trajectory prediction and probabilistic analysis. These findings validate the framework's effectiveness in proactive safety warning for intelligent vehicles.
-
表 1 不同模型在Argoverse测试集中的结果对比
Table 1. Comparison of results of different methods in the argverse test set
单位: m -
[1] JIYANG G, CHEN S, HANG Z, et al. VectorNet: encoding HD maps and agent dynamics from vectorized representation[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, USA: IEEE, 2020. [2] ZHAO H, GAO J, LAN T, et al. Tnt: Target-driven trajectory prediction[C]. Conference on Robot Learning, London, UK: PMLR, 2021. [3] GU J, SUN C, ZHAO H. Densetnt: end-to-end trajectory prediction from dense goal sets[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada: IEEE, 2021. [4] LIANG M, YANG B, HU R, et al. Learning lane graph representations for motion forecasting[C]. 16th European Conference, Glasgow, UK: ECCV, 2020. [5] BHATTACHARYYA P, HUANG C, CZARNECKI K. Ssl-lanes: self-supervised learning for motion forecasting in autonomous driving[C]. Conference on Robot Learning, Seoul, Korea: PMLR, 2023. [6] ZHOU Z, YE L, WANG J, et al. Hivt: hierarchical vector transformer for multi-agent motion prediction[C]. The IEEE/ CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA : IEEE, 2022. [7] FAHMY H M, ABD EL GHANY M A, BAUMANN G. Vehicle risk assessment and control for lane-keeping and collision avoidance at low-speed and high-speed scenarios[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (6): 4806-4818. doi: 10.1109/TVT.2018.2807796 [8] WU B, YAN Y, NI D, et al. A longitudinal car-following risk assessment model based on risk field theory for autonomous vehicles[J]. International Journal of Transportation Science and Technology, 2021, 10(1): 60-68. doi: 10.1016/j.ijtst.2020.05.005 [9] CHIA W M D, KEOH S L, MICHALA A L, et al. Real-time recursive risk assessment framework for autonomous vehicle operations[C]. 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland: IEEE, 2021. [10] 王建强, 吴剑, 李洋. 基于人-车-路协同的行车风险场概念、原理及建模[J]. 中国公路学报, 2016(1): 105-114.WANG J Q, WU J, LI Y. Concept, principle and modeling of driving risk field based on driver-vehicle-road interaction[J]. China Journal of Highway and Transport, 2016(1): 105-114. (in Chinese) [11] LI L, GAN J, ZHOU K, et al. A novel lane-changing model of connected and automated vehicles: using the safety potential field theory[J]. Physica A: Statistical Mechanics and its Applications, 2020, 559: 125039. doi: 10.1016/j.physa.2020.125039 [12] 田野, 裴华鑫, 晏松, 等. 车路协同环境下行车风险场模型的扩展与应用[J]. 清华大学学报(自然科学版), 2022 (3): 447-457.TIAN Y, PEI H X, YAN S, et al. Extended driving risk field model for i-VICS and its application[J]. Journal of Tsinghua University(Science and Technology), 2022(3): 447-457. (in Chinese) [13] KATRAKAZAS C, QUDDUS M, CHEN W H. A new integrated collision risk assessment methodology for autonomous vehicles[J]. Accident Analysis & Prevention, 2019, 127: 61-79. [14] LEDENT P, PAIGWAR A, RENZAGLIA A, et al. Formal validation of probabilistic collision risk estimation for autonomous driving[C]. 9th IEEE International Conference on Cybernetics and Intelligent SystemsRobotics, Automation and Mechatronics(RAM), Bangkok, Thailand: IEEE, 2019. [15] STRICKLAND M, FAINEKOS G, AMOR H B. Deep predictive models for collision risk assessment in autonomous driving[C]. 2018 IEEE International Conference on Robotics and Automation(ICRA), Brisbane, Australia: IEEE, 2018. [16] 汪磊, 李蕊君, 王菲茵. 基于QAR数据与互信息法的进近风险评估模型[J]. 交通信息与安全, 2024, 42(4): 21-29, 41. doi: 10.3963/j.jssn.1674-4861.2024.04.003WANG Q, LI R J, WANG F Y. Approach risk assessment model based on QAR data and mutual information method[J]. Journal of Transport Information and Safety, 2024, 42(4): 21-29, 41. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.04.003 [17] 赵睿, 李云, 胡宏宇, 等. 基于V2I通信的交叉口车辆碰撞预警方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1019-1029.ZHAO R, LI Y, HU H Y, et al. Vehicle collision warning method at intersection based on V2I communication[J]. Journal of Jilin University(Engineering Science), 2023, 53(4): 1019-1029. (in Chinese) [18] KRAMER B, NEUROHR C, BÜKER M, et al. Identification and quantification of hazardous scenarios for automated driving[C]. 7th International Symposium on Model-based Safety and assessment. Cham, Germany: Springer International Publishing, 2020. [19] CHANG M F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D tracking and forecasting with rich maps[C]. The IEEE/CVF conference on computer vision and pattern recognition, Long Beach, USA: IEEE, 2019. [20] YE M, CAO T, CHEN Q. Tpcn: temporal point cloud net-works for motion forecasting[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition: IEEE, 2021. [21] 褚端峰, 彭赛骞, 胡海洋, 等. 预见性驾驶风险场模型[J]. 机械工程学报, 2024, 60(10): 160-170.CHU D F, PENG S Q, HU H Y, et al. Predictive driving risk field model[J]. Journal of Mechanical Engineering, 2024, 60(10): 160-170. (in Chinese) [22] LOPEZ A, PABLO, BEHRISCH, et al. Microscopic traffic simulation using sumo[C]. 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, Hawaii, USA: IEEE, 2018. -