留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

驱动系统悬挂结构对轴箱内置式转向架动态性能的影响

厍立云 王家鑫 刘禹清 陈再刚

厍立云, 王家鑫, 刘禹清, 陈再刚. 驱动系统悬挂结构对轴箱内置式转向架动态性能的影响[J]. 交通信息与安全, 2025, 43(1): 31-41. doi: 10.3963/j.jssn.1674-4861.2025.01.003
引用本文: 厍立云, 王家鑫, 刘禹清, 陈再刚. 驱动系统悬挂结构对轴箱内置式转向架动态性能的影响[J]. 交通信息与安全, 2025, 43(1): 31-41. doi: 10.3963/j.jssn.1674-4861.2025.01.003
SHE Liyun, WANG Jiaxin, LIU Yuqing, CHEN Zaigang. Effect of Driving System's Suspension Structure on Dynamics Performances of Inner Axlebox Bogie[J]. Journal of Transport Information and Safety, 2025, 43(1): 31-41. doi: 10.3963/j.jssn.1674-4861.2025.01.003
Citation: SHE Liyun, WANG Jiaxin, LIU Yuqing, CHEN Zaigang. Effect of Driving System's Suspension Structure on Dynamics Performances of Inner Axlebox Bogie[J]. Journal of Transport Information and Safety, 2025, 43(1): 31-41. doi: 10.3963/j.jssn.1674-4861.2025.01.003

驱动系统悬挂结构对轴箱内置式转向架动态性能的影响

doi: 10.3963/j.jssn.1674-4861.2025.01.003
基金项目: 

国家自然科学基金项目 52388102

国家自然科学基金项目 52275132

四川省科技计划项目 2024NSFTD0011

详细信息
    作者简介:

    厍立云(2000—),硕士研究生. 研究方向:高速列车系统动力学. E-mail:sly520413@163.com

    通讯作者:

    陈再刚(1984—),博士,研究员. 研究方向:铁路机车车辆系统动力学、机械传动系统动力学. E-mail:zgchen@home.swjtu.edu.cn

  • 中图分类号: U266.2

Effect of Driving System's Suspension Structure on Dynamics Performances of Inner Axlebox Bogie

  • 摘要: 为了优化轴箱内置式转向架驱动系统的悬挂结构,提高轨道交通车辆的服役安全性和可靠性,基于齿轮动力学、车辆系统动力学等理论,利用多体动力学软件SIMPACK建立了考虑驱动及传动系统的轴箱内置式车辆动力学模型。在现采用的轴箱内置式转向架驱动系统悬挂形式的基础上,研究了3种不同的悬挂结构,分析了不同驱动系统悬挂结构下,牵引电机质量在一系簧下及一系簧上的分配比例;考虑齿轮啮合及轨道随机不平顺等内、外部激励,结合驱动系统不同悬挂结构形式,研究了不同车辆运行速度下牵引电机等关键部件的振动响应、联轴器变位、驱动系统悬挂点动态载荷等动力学特性,揭示了不同驱动系统悬挂结构对轴箱内置式转向架动态性能的影响规律。研究结果表明:齿轮箱与电机之间用橡胶节点连接可以限制二者的相对位移,对联轴器起到良好的保护作用,但由于增加振动从轮轨界面向驱动系统及构架传递的路径,牵引电机及构架等关键部件振动水平显著升高;减少齿轮箱与电机之间橡胶节点的数量,可以减小驱动系统分配到一系簧下的质量以及齿轮箱与车轴铰接处的垂向载荷,但会增大电机悬吊点和齿轮箱吊杆吊点承受的垂向载荷。本文的研究结果可为轴箱内置式动力转向架驱动系统悬挂结构的设计提供参考。

     

  • 图  1  动力学模型示意图

    Figure  1.  Diagram of dynamics mode

    图  2  列车牵引动力传递路径

    Figure  2.  Transmission path of train traction power

    图  3  牵引特性及阻力曲线

    Figure  3.  Curve of traction characteristics and resistance

    图  4  齿轮啮合刚度

    Figure  4.  Mesh stiffness of gear pair

    图  5  轨道随机不平顺

    Figure  5.  Track random irregularity

    图  6  四点式结构

    Figure  6.  Four-point structure

    图  7  三点式结构

    Figure  7.  Three-point structure

    图  8  两点式结构

    Figure  8.  Two-point structure

    图  9  悬吊式结构

    Figure  9.  Suspension structure

    图  10  三点式结构对比

    Figure  10.  Comparison of three-point structure

    图  11  Comparison of two-point structure

    Figure  11.  Comparison of two-point structure

    图  12  构架振动加速度RMS值

    Figure  12.  RMS values of vibration acceleration of frame

    图  13  电机振动加速度RMS值

    Figure  13.  RMS values of vibration acceleration of motor

    图  14  齿轮箱振动加速度RMS值

    Figure  14.  RMS values of vibration acceleration of gearbox

    图  15  联轴器变位最大值

    Figure  15.  Max values of displacement of coupling

    图  16  电机悬吊点垂向载荷RMS值

    Figure  16.  RMS values of motor suspension point vertical force

    图  17  齿轮箱吊杆吊点垂向载荷RMS值

    Figure  17.  RMS values of gearbox rod joint vertical force

    图  18  齿轮箱-车轴铰接点垂向载荷RMS值

    Figure  18.  RMS values of gearbox-axle joint vertical force

    图  19  轮轨力最大值

    Figure  19.  Max values of wheel-rail force

    表  1  主要设计参数

    Table  1.   Main parameters of design

    参数 数值 参数 数值 参数 数值
    设计速度/(km/h) 200 车轮滚动圆直径/mm 860 轴箱中心横向跨距/mm 1 120
    车体质量/kg 26 000 车辆定距/mm 15 700 一系悬挂横向跨距/mm 1 120
    构架质量/kg 1 068 轴距/mm 2 300 空气弹簧横向跨距/mm 1 500
    下载: 导出CSV

    表  2  齿轮副参数

    Table  2.   Parameters of gear pair

    参数 主动轮 从动轮
    模数/mm 5.5 5.5
    压力角/deg 20 20
    螺旋角/deg 18 18
    中心距/mm 380 380
    齿数 23 107
    齿宽/mm 64 60
    齿顶高系数 1 1
    顶隙系数 0.4 0.4
    变位系数 0.402 9 0.369 8
    下载: 导出CSV

    表  3  牵引电机质量分配情况

    Table  3.   Distribution of traction motor mass

    悬挂结构 簧下质量/% 簧上质量/%
    四点式 49.67 50.33
    三点式 38.55 61.45
    两点式 14.43 85.57
    悬吊式 0 100
    下载: 导出CSV
  • [1] 梁树林, 傅茂海. 内侧悬挂转向架在城轨车辆中的应用研究[J]. 铁道车辆, 2006, 44(4): 4-7.

    LIANG S L, FU M H. Research on application of inside suspension bogies in urban vehicles[J]. Rolling Stock, 2006, 44(4): 4-7. (in Chinese)
    [2] 缪炳荣, 张卫华, 池茂儒, 等. 下一代高速列车关键技术特征分析及展望[J]. 铁道学报, 2019, 41(3): 58-70.

    MIAO B R, ZHANG W H, CHI M R, et al. Analysis and prospects of key technical features of next generation high speed trains[J]. Journal of the China Railway Society, 2019, 41(3): 58-70. (in Chinese)
    [3] HECHT M. In search of a quieter, lighter freight bogie[J]. Railway Gazette International, 2002, 158(9): 563-568.
    [4] 邓铁松. 两种轴箱悬挂布置直线电机地铁车辆的轮轨磨耗及动力学性能对比[D]. 成都: 西南交通大学, 2014.

    DENG T S. Dynamics performance and wheel/rall wear of linear induction motor vehicles with two kinds of axle box positions[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [5] 邓铁松, 吴磊, 凌亮, 等. 轴箱内置与外置直线电机地铁车辆曲线通过性能对比[J]. 计算机辅助工程, 2015, 24(1): 12-17.

    DENG T S, WU L, LING L, et al. Comparison of curving performance of linear induction motor metro vehicles with inside and outside axle boxes[J]. Computer Aided Engineering, 2015, 24(1): 12-17. (in Chinese)
    [6] 方凌昊. 轮对柔性对轴箱内、外置直线电机车辆轮轨磨耗及动力学的影响[D]. 成都: 西南交通大学, 2022.

    FANG L H. Influence of wheelset flexibility on wheel-rall wear and dynamics of linear motor vehicle with inside and outside axle boxes[D]. Chengdu: Southwest Jiaotong University, 2022. (in Chinese)
    [7] WU S C, LIU Y X, LI C H, et al. On the fatigue performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2018, 197: 176-191. doi: 10.1016/j.engfracmech.2018.04.046
    [8] 刘书扬. 高速货车内轴箱铰接构架转向架设计及动力学性能研究[D]. 成都: 西南交通大学, 2021.

    LIU S Y. Design and research on dynamic performance of articulated frame inner axle box bogie for high-speed wagon[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)
    [9] WU B W, CHEN G X, LV J Z, et al. Effect of the axlebox arrangement of the bogie and the primary suspension parameters on the rail corrugation at the sharp curve metro track[J]. Wear, 2019, 426: 1828-1836.
    [10] 蔡久凤, 刘建新, 刘志伟, 等. 考虑轴箱布置的高速列车动力学性能分析[J]. 铁道机车车辆, 2022, 42(6): 1-8.

    CAI J F, LIU J X, LIU Z W, et al. Dynamic performance analysis of high-speed train considering axle box arrangement structure[J]. Railway Locomotive & Car, 2022, 42(6): 1-8. (in Chinese)
    [11] HIROTSU T, KASAI S, TAKAI H. Self-excited vibration during slippage of parallel cardan drives for electric rail-cars[J]. JSME International Journal, 1987, 30 (266): 1304-1310. doi: 10.1299/jsme1987.30.1304
    [12] 罗赟, 罗世辉, 金鼎昌. 采用弹性与刚性架承式驱动装置的机车横向性能比较[J]. 机车电传动, 2005(3): 41-43.

    LUO Y, LUO S H, JIN D C. Comparison on lateral performances of locomotives with flexible and rigid drive[J]. Electric Drive for Locomotives, 2005(3): 41-43. (in Chinese)
    [13] 马卫华, 罗世辉, 宋荣荣. 提速架悬机车动力学性能的改进[J]. 西南交通大学学报, 2007, 42(1): 84-88.

    MA W H, LUO S H, SONG R R. Improvement of dynamic performance of speed-raising locomotive with motor mounted on frame[J]. Journal of Southwest Jiaotong Universit, 2007, 42(1): 84-88. (in Chinese)
    [14] 冯相杰, 陈康. 牵引电机悬挂方式对机车横向稳定性的影响研究[J]. 铁道机车车辆, 2018, 38(1): 62-65.

    FENG X J, CHEN K. Effect research on suspension mode of traction motor to lateral stability of locomotive[J]. Railway Locomotive & Car, 2018, 38(1): 62-65. (in Chinese)
    [15] ALFI S, MAZZOLA L, BRUNI S. Effect of motor connection on the critical speed of high-speed railway vehicles[J]. Vehicle System Dynamics, 2008, 46(Sup1): 201-214. doi: 10.1080/00423110801935814
    [16] HUANG C H, ZENG J, LIANG S L. Influence of system parameters on the stability limit of the undisturbed motion of a motor bogie[J]. Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit, 2014, 228(5): 522-534. doi: 10.1177/0954409713488099
    [17] YAO Y, ZHANG H J, LUO S H. The mechanism of drive system flexible suspension and its application in locomotives[J]. Transport, 2015, 30(1): 69-79.
    [18] XU K, ZENG J, HUANG C H. Nonlinear stability analysis of motor bogies for high-speed trains[J]. Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit, 2019, 233(9): 885-895. doi: 10.1177/0954409718814972
    [19] 姚远, 宋亚东, 李广, 等. 高速列车转向架的主动稳定性研究[J]. 动力学与控制学报, 2020, 18(3): 31-37.

    YAO Y, SONG Y D, LI G, et al. Research on active stability of high-speed train bogies[J]. Journal of Dynamics and Control, 2020, 18(3): 31-37. (in Chinese)
    [20] 朱海燕, 黎洁, 尹必超, 等. 牵引电机悬挂参数对高速列车牵引传动部件振动特性的影响[J]. 交通运输工程学报, 2023, 23(1): 156-169.

    ZHU H Y, LI J, YIN B C, et al. Influence of suspension parameters of traction motor on vibration characteristics of traction drive components of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 156-169. (in Chinese)
    [21] 张岩, 张晖, 陈康, 等. 电机布置方式对机车动力学性能的影响及参数分析研究[J]. 机械制造与自动化, 2023, 52(6): 45-49.

    ZHANG Y, ZHANG H, CHEN K, et al. Influence of driving system layout on locomotive dynamic performance and parameter analysis[J]. Machine Building & Automation, 2023, 52(6): 45-49. (in Chinese)
    [22] 吴志强, 刘禹清, 陈再刚. 齿轮箱吊杆节点刚度对轴箱内置式高速列车驱动系统动态特性影响研究[J]. 动力学与控制学报, 2023, 21(3): 17-29.

    WU Z Q, LIU Y Q, CHEN Z G. Effect of the suspension stiffness of the gearbox rod on the dynamic characteristics of the drive system of high-speed train with the built-in axle box[J]. Journal of Dynamics and Control, 2023, 21(3): 17-29. (in Chinese)
    [23] 杨建伟, 郭宇轩, 王金海. 体悬式牵引电机悬挂参数对高速列车的振动特性影响[J]. 北京交通大学学报, 2023, 47(3): 122-129.

    YANG J W, GUO Y X, WANG J H. Influence of suspension parameters of body suspension traction motor on vibration characteristics of high-speed train[J]. Journal of Beijing Jiaotong University, 2023, 47(3): 122-129. (in Chinese)
    [24] 王家鑫, 张汉辰, 吴志强, 等. 基于正交试验的轴箱内置式高速动车驱动系统悬挂刚度优化方法[J]. 交通信息与安全, 2023, 41(6): 12-19. doi: 10.3963/j.jssn.1674-4861.2023.06.002

    WANG J X, ZHANG H C, Wu Z Q, et al. A suspension stiffness optimization for driving system in high-speed train with the built-in axle box based on orthogonal test[J]. Journal of Transport Information and Safety, 2023, 41(6): 12-19. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.06.002
    [25] 冯遵委, 胡晗达, 杨震寰, 等. 基于电机架悬的转向架稳定性与控制策略[J]. 交通运输工程学报, 2024, 24(2): 152-165.

    FENG Z W, HU H D, YANG Z H, et al. Bogie stability and control strategy based on motor suspension[J]. Journal of Traffic and Transportation Engineering, 2024, 24 (2): 152-165. (in Chinese)
    [26] 陈再刚, 刘禹清, 周子伟, 等. 轨道交通牵引动力传动系统动力学研究综述[J]. 交通运输工程学报, 2021, 21(6): 31-49.

    CHEN Z G, LIU Y Q, ZHOU Z W, et al. Summary of dynamics research on traction power transmission system of rail transits[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 31-49. (in Chinese)
    [27] CHEN Z G, ZHAI W M, WANG K Y. A locomotive-track coupled vertical dynamics model with gear transmissions[J]. Vehicle System Dynamics, 2017, 55(2): 244-267.
    [28] NING J Y, CHEN Z G, ZHAI W M. Improved analytical model for mesh stiffness calculation of cracked helical gear considering interactions between neighboring teeth[J]. Science China-Technological Sciences, 2023, 66(3): 706-720.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-15
  • 网络出版日期:  2025-06-27

目录

    /

    返回文章
    返回