留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

借用城市公交专用道行驶的智能网联车辆轨迹优化方法

付凤杰 李博林 金盛

付凤杰, 李博林, 金盛. 借用城市公交专用道行驶的智能网联车辆轨迹优化方法[J]. 交通信息与安全, 2024, 42(6): 103-111. doi: 10.3963/j.jssn.1674-4861.2024.06.011
引用本文: 付凤杰, 李博林, 金盛. 借用城市公交专用道行驶的智能网联车辆轨迹优化方法[J]. 交通信息与安全, 2024, 42(6): 103-111. doi: 10.3963/j.jssn.1674-4861.2024.06.011
FU Fengjie, LI Bolin, JIN Sheng. Trajectory Optimization for Connected Automated Vehicles Borrowing Urban Dedicated Bus Lane[J]. Journal of Transport Information and Safety, 2024, 42(6): 103-111. doi: 10.3963/j.jssn.1674-4861.2024.06.011
Citation: FU Fengjie, LI Bolin, JIN Sheng. Trajectory Optimization for Connected Automated Vehicles Borrowing Urban Dedicated Bus Lane[J]. Journal of Transport Information and Safety, 2024, 42(6): 103-111. doi: 10.3963/j.jssn.1674-4861.2024.06.011

借用城市公交专用道行驶的智能网联车辆轨迹优化方法

doi: 10.3963/j.jssn.1674-4861.2024.06.011
基金项目: 

国家重点研发计划项目 2023YFB4302600

国家自然科学基金项目 72361137006

浙江省自然科学基金杰出青年基金项目 R23E080015

浙江省基础公益研究计划项目 LGF22F030008

详细信息
    作者简介:

    付凤杰(1990—),博士,讲师. 研究方向:交通管理工程、智能交通系统等. E-mail:fufengjie@zjjcxy.cn

    通讯作者:

    金盛(1982—),博士,教授. 研究方向:交通信息工程及控制、智能交通系统等. E-mail:jinsheng@zju.edu.cn

  • 中图分类号: U491.5+4U495

Trajectory Optimization for Connected Automated Vehicles Borrowing Urban Dedicated Bus Lane

  • 摘要: 智能网联车辆(connected and automated vehicle,CAV)利用公交车运行的间隙,借用公交专用道通行,能够减少与人工驾驶车辆(human driving vehicle,HDV) 混合运行的相互干扰,进一步提升公交专用道的利用效率,是当前混合交通流环境下提升CAV运行效率的重要方式之一。以公交专用道上公交车辆的运行轨迹、公交专用道物理信息以及交通信号配时方案为约束,同时考虑CAV在港湾式公交停靠站的超车行为,构建了CAV借用公交专用道通行的轨迹优化模型。通过将模型分解为子模型并在时空上进行网格划分,提出了模型求解的具体流程,建立了基于类贪婪算法的求解方法,并采用MATLAB和yalmip求解工具进行模型求解。以杭州市莫干山路公交专用道为实例开展数值仿真,分析了港湾式公交停靠站、公交停靠时间、交通信号配时参数等因素对模型结果的影响,进一步验证了模型的有效性。结果表明:公交停靠时间会显著影响CAV的运行速度,随着公交停靠时间的增加,CAV运行速度呈现先增后减的趋势。通过公交站点的停靠时间与交通信号配时的协同优化,可以有效提升CAV的运行效率。同时,与存在部分港湾式公交停靠站相比,全部设置港湾式公交停靠站可以使CAV运行速度提升10%。

     

  • 图  1  公交专用道内公交车和CAV的时空图

    Figure  1.  Time-space graph for bus and CAV in bus lanes

    图  2  CAV在公交专用道行驶的2种基本轨迹

    Figure  2.  Two basic trajectories for CAV in a bus lane

    图  3  时间离散化时路段的时空关系图

    Figure  3.  Time-space graph of one section with time discretized

    图  4  典型实证道路的物理结构与交通需求

    Figure  4.  Physical features and traffic demand of typical empirical roads

    图  5  公交车不同停靠时间下的CAV平均速度

    Figure  5.  Average CAV speed at different stop times

    图  6  不同场景下的CAV时空轨迹图

    Figure  6.  Spatiotemporal trajectory diagram of CAV in different scenarios

  • [1] YE L, YAMAMOTO T. Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput[J]. Physica A: Statistical Mechanics and its Applications, 2018. 512: 588-597. doi: 10.1016/j.physa.2018.08.083
    [2] DE ALMEIDA CORREIA G H, Menendez M. Automated and connected vehicles: effects on traffic, mobility and urban design[J]. International Journal of Transportation Science and Technology, 2017, 6 (1): 3-4.
    [3] 崔冰艳, 李贺, 崔哲, 等. 智能网联汽车换道决策安全性研究综述[J]. 交通信息与安全, 2023, 41 (4): 1-13. doi: 10.3963/j.jssn.1674-4861.2023.04.001

    CUI B Y, LI H, CUI Z, et al. A review of safety studies on lane change decision-makings for connected automated vehicles[J]. Journal of Transport Information and Safety, 2023, 41 (4): 1-13. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.04.001
    [4] ZHOU J, ZHU F. Modeling the fundamental diagram of mixed human-driven and connected automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102614. doi: 10.1016/j.trc.2020.102614
    [5] 程泽阳, 孙凌霞, 丁恒, 等. 车路协同环境下道路交通安全研究进展[J]. 交通运输工程与信息学报, 2024, 85 (3): 14-33.

    CHENG Z Y, SUN L X, DING H, et al. Research progress of road traffic safety in cooperative vehicle infrastructure environment[J]. Journal of Transportation Engineering and Information, 2024, 85 (3): 14-33. (in Chinese)
    [6] 李斌, 马静, 徐学才, 等. 基于车辆轨迹的高速公路异常事件自动检测算法[J]. 交通信息与安全, 2023, 41 (3): 23-29. doi: 10.3963/j.jssn.1674-4861.2023.03.003

    LI B, MA J, XU X C, et al. An automatic freeway incident detection algorithm using vehicle trajectories[J]. Journal of Transport Information and Safety, 2023, 41(3): 23-29. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.03.003
    [7] NHTSA. Preliminary statement of policy concerning automated vehicles[Z]. Washington, D.C. NHTSA, 2013.
    [8] YANG K, YAN Z, CHEN D, et al. Convolutional neural network-based intention forecasting and lane change path predicting of the human driver[C]. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Anaheim, Canada: ASME, 2019.
    [9] 张迎亚. 基于隐马尔可夫模型的车辆轨迹预测算法的研究[D]. 南京: 南京邮电大学, 2017.

    ZHANG Y Y. Reasearch on the algorithm of vehicle trajectory prediction based on HMM[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017. (in Chinese)
    [10] 吕维. 基于深度增强学习的智能车安全并道决策研究[D]. 成都: 电子科技大学, 2019.

    LYU W. Decision-making research on safe lane change of intelligent vehicle based on deep reinforcement learning[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese)
    [11] 吴红兰, 胡德富, 郭旭周. 基于Informer的车辆多意图运动轨迹预测[J]. 交通运输工程与信息学报, 2024, 85(3): 68-79.

    WU H L, HU D F, GUO X Z, Vehicle multi-intention motion trajectory prediction based on Informer[J]. Journal of Transportation Engineering and Information, 2024, 85 (3): 68-79.
    [12] MOHAJERPOOR R, RAMEZANI M. Mixed flow of autonomous and human-driven vehicles: analytical headway modeling and optimal lane management[J]. Transportation Research Part C: Emerging Technologies, 2019, 109: 194-210. doi: 10.1016/j.trc.2019.10.009
    [13] CHEN Z, HE F, ZHANG L, et al. Optimal deployment of autonomous vehicle lanes with endogenous market penetration[J]. Transportation Research Part C: Emerging Technologies, 2016, 72: 143-156. doi: 10.1016/j.trc.2016.09.013
    [14] BANKS V A, PLANT K L, STANTON N A. Driver error or designer error using the perceptual cycle model to explore the circumstances surrounding the fatal Tesla crash on 7th May 2016[J]. Safety Science, 2018, 108: 278-285. doi: 10.1016/j.ssci.2017.12.023
    [15] LAWLESS W. Toward a physics of interdependence for autonomous human-machine systems: the case of the uber fatal accident, 2018[J]. Frontiers in Physics, 2022, 10: 879171. doi: 10.3389/fphy.2022.879171
    [16] CONCEIÇÃO L, CORREIA G, TAVARES J P. The deployment of automated vehicles in urban transport systems: a methodology to design dedicated zones[J]. Transportation Research Procedia, 2017, 27: 230-237. doi: 10.1016/j.trpro.2017.12.025
    [17] IVANCHEV J, KNOLL A, ZEHE D, et al. Potentials and implications of dedicated highway lanes for autonomous vehicles[D]. Ithaca: Cornell University, 2017.
    [18] VANDER LAAN Z, SADABADI K F. Operational performance of a congested corridor with lanes dedicated to autonomous vehicle traffic[J]. International Journal of Transportation Science and Technology, 2017, 6 (1): 42-52. doi: 10.1016/j.ijtst.2017.05.006
    [19] TALEBPOUR A, MAHMASSANI H S, ELFAR A. Investigating the effects of reserved lanes for autonomous vehicles on congestion and travel time reliability[J]. Transportation Research Record, 2017, 2622 (1): 1-12. doi: 10.3141/2622-01
    [20] WIRASINGHE S C, et al. Bus rapid transit-a review[J]. International Journal of Urban Sciences, 2013, 17 (1): 1-31. doi: 10.1080/12265934.2013.777514
    [21] HOONSIRI C, CHIARAKORN S, KIATTIKOMOL V. Using combined bus rapid transit and buses in a dedicated bus lane to enhance urban transportation sustainability[J]. Sustainability, 2021, 13 (6): 3052. doi: 10.3390/su13063052
    [22] HE S, DING F, LU C, et al. Impact of connected and autonomous vehicle dedicated lane on the freeway traffic efficiency[J]. European Transport Research Review. 2022, 14(1): 1-14. doi: 10.1186/s12544-021-00517-y
    [23] 陆化普, 孙煦, 吴娟. 公交专用道优化设计的双层规划模型[J]. 中国公路学报, 2015, 28 (2): 87-94.

    LU H P, SUN X, WU J, Bi-level programming model for optimization design of exclusive bus lane[J]. China Journal of Highway and Transport, 2015, 28 (2): 87-94. (in Chinese)
    [24] 徐志刚, 李金龙, 赵祥模, 等. 智能公路发展现状与关键技术[J]. 中国公路学报, 2019, 32 (8): 1-24.

    XU Z G, LI J L, ZHAO X M, et al. Development status and key technologies of intelligent highways[J]. China Journal of Highway and Transport, 2019, 32 (8): 1-24. (in Chinese)
    [25] EICHLER M, DAGANZO C F. Bus lanes with intermittent priority: strategy formulae and an evaluation[J]. Transportation Research Part B: Methodological, 2006, 40(9): 731-744. doi: 10.1016/j.trb.2005.10.001
    [26] CHEN X, LIN X, HE F, et al. Modeling and control of automated vehicle access on dedicated bus rapid transit lanes[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102795.
    [27] LIN Y, ZHANG N, DONG H. Capability of intermittent bus lane utilization for regular vehicles[J]. Journal of Advanced Transportation, 2022, 2022: 1-17.
    [28] BAYRAK M, GULER S I. Optimizing bus lane placement on networks while accounting for queue spillbacks[C]. 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA: IEEE, 2018.
    [29] LI J Q, SONG M K, MENG L, et al. Planning for bus rapid transit in single dedicated bus lane[J]. Journal of the Transportation Research Board, 2009, 2111 (1): 76-82.
  • 加载中
图(6)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  18
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-05
  • 网络出版日期:  2025-03-08

目录

    /

    返回文章
    返回