留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向数据脱敏的交通场景车牌检测方法

应申 曾卓源 张纪元

应申, 曾卓源, 张纪元. 面向数据脱敏的交通场景车牌检测方法[J]. 交通信息与安全, 2024, 42(6): 84-94. doi: 10.3963/j.jssn.1674-4861.2024.06.009
引用本文: 应申, 曾卓源, 张纪元. 面向数据脱敏的交通场景车牌检测方法[J]. 交通信息与安全, 2024, 42(6): 84-94. doi: 10.3963/j.jssn.1674-4861.2024.06.009
YING Shen, ZENG Zhuoyuan, ZHANG Jiyuan. A Detection Method of Traffic Scene License Plate for Data Desensitization[J]. Journal of Transport Information and Safety, 2024, 42(6): 84-94. doi: 10.3963/j.jssn.1674-4861.2024.06.009
Citation: YING Shen, ZENG Zhuoyuan, ZHANG Jiyuan. A Detection Method of Traffic Scene License Plate for Data Desensitization[J]. Journal of Transport Information and Safety, 2024, 42(6): 84-94. doi: 10.3963/j.jssn.1674-4861.2024.06.009

面向数据脱敏的交通场景车牌检测方法

doi: 10.3963/j.jssn.1674-4861.2024.06.009
基金项目: 

国家重点研发计划项目 2021YFB2501101

湖北重大科技攻关项目 2023BAA017

详细信息
    通讯作者:

    应申(1979—),博士,教授. 研究方向:地图学与地理信息系统、自动驾驶高精地图. E-mail:shy@whu.edu.cn

  • 中图分类号: U412

A Detection Method of Traffic Scene License Plate for Data Desensitization

  • 摘要: 从车载相机图像中快速准确地检测车牌对于保护交通敏感信息具有重要意义。针对传统YOLOv8算法对交通场景下车牌检测存在的小目标特征提取能力弱、背景信息误检等问题,研究了基于改进YOLOv8的交通场景车牌检测方法TLP-YOLO。为增强主干网络提取图像特征信息能力,引入多尺度注意力模块(effi-cient multi-scale attention,EMA),加强对不同尺度目标区域的关注,提升模型对背景信息的甄别能力;提出跳阶加权特征金字塔网络,丰富小目标特征,通过跳阶连接和加权融合方式,避免特征金字塔结构不同层级间的信息损失,提升模型的多尺度特征融合能力;为降低模型计算量并保持检测精度,对检测头进行轻量化处理,引入部分卷积(partial convolution,PConv)和逐点卷积(pointwise,PWConv)模块代替常规卷积结构,以高效利用空间特征,避免冗余计算。基于中国城市停车数据集(Chinese city parking dataset,CCPD)和中国道路车牌数据集(Chinese road plate dataset,CRPD)构建用于验证模型性能的多交通场景数据集并进行了算法验证。实验结果表明:①TLP-YOLO的AP50-95和AP70分别达到了83.6%,和97.7%,相较于基准算法YOLOv8,其AP50-95和AP70分别提高了2%和0.8%。② TLP-YOLO模型的计算复杂度(floating point opera-tions,FLOPs)为7.5 G,模型参数量为1.67 M,检测速度达到了101 fps,相较于基准算法YOLOv8,计算复杂度降低了8.5%,模型参数量减少了45%,平均检测速度则与之相当。改进后的算法能够在保证模型轻量化的同时,提高检测精度,满足车载设备对交通场景中车牌检测准确性与部署要求。

     

  • 图  1  TLP-YOLO网络框架

    Figure  1.  Network structure of TLP-YOLO

    图  2  C2f_EMA结构

    Figure  2.  Structure of C2f_EMA

    图  3  EMA结构

    Figure  3.  Structure of EMA

    图  4  加入EMA注意力前后效果对比

    Figure  4.  Comparison of effects before and after adding EMA attention

    图  5  改进前后的Neck网络

    Figure  5.  Improved Neck network before and after

    图  6  加权融合方式

    Figure  6.  weighted fusion method

    图  7  Detect-Faster结构

    Figure  7.  Structure of Detect-Faster

    图  8  卷积模块对比

    Figure  8.  Convolution module comparison

    图  9  数据集车牌尺寸分布情况

    Figure  9.  License plate size distribution of the dataset

    图  10  CCPD数据集检测效果对比

    Figure  10.  Comparison of detection effect of CCPD

    图  11  CRPD数据集检测效果对比

    Figure  11.  Comparison of detection effect of CRPD

    表  1  数据分配情况

    Table  1.   Data distribution situation

    子数据集 训练集样本量/个 测试集样本量/个 描述
    CCPD_base 1 000 500 常见情况下的车牌
    CCPD_blur 1 000 500 较模糊的车牌
    CCPD_weather 1 000 500 雨雪雾等复杂天气
    CCPD_rotate & tilt 1 000 500 倾斜、形变较大的车牌
    CCPD_db 1 000 500 车牌区域光照不均匀
    CCPD_fn 1 000 500 车牌拍摄距离相对较近或较远
    CCPD_challenge 0 2 000 车牌检测中较有挑战性的图片
    CRPD_single 3 000 1 500 仅有1个车牌的图片
    CRPD_double 3 000 1 500 有2个车牌的图片
    CRPD_multi 0 1 585 包含多个车牌的图片
    下载: 导出CSV

    表  2  注意力模块对比实验

    Table  2.   Comparative experiments on attention modules

    模块名称 AP50-95/% AP70/% FLOPs/G
    C2f 81.6 96.9 8.2
    C2f+CBAM 81.5 96.9 8.2
    C2f+GAM 81.9 97.1 13.5
    C2f+GC 81.7 96.8 8.2
    C2f+EMA 82.0 97.1 8.4
    下载: 导出CSV

    表  3  特征融合方式对比实验

    Table  3.   Comparative experiments on feature fusion method

    融合方式 AP50-95/% AP70/% FLOPs/G
    拼接融合 81.6 96.9 8.2
    加权融合 83.0 97.2 16.5
    本文方式 83.2 97.3 12.3
    注:拼接融合为YOLOv8采用的基础融合方式,加权融合为为完全采用加权的方式进行特征融合,本文方式为拼接结合加权,2特征融合采用拼接,3特征融合采用加权。
    下载: 导出CSV

    表  4  YOLOv8与TLP-YOLO的性能对比

    Table  4.   Performance comparison between YOLOv8 and TLP-YOLO

    算法 r /% p /% AP50-95/% AP70/% FLOPs/G FPS/(f/s) Parameters/M 模型所占空间/MB
    YOLOv8 96.1 97.4 81.6 96.9 8.2 104.2 3.01 14.4
    TLP-YOLO 98.2 98.3 83.6 97.7 7.5 101.0 1.67 9.8
    下载: 导出CSV

    表  5  CCPD数据集上YOLOv8与TLP-YOLO的性能对比

    Table  5.   Performance comparison between YOLOv8 and TLP-YOLO on CCPD

    子数据集 AP50-95/% AP70/%
    YOLOv8 TLP-YOLO YOLOv8 TLP-YOLO
    CCPD_base 88.2 88.5 99.2 99.2
    CCPD_blur 88.6 89 98.7 98.8
    CCPD_db 84.9 85.6 98.6 98.9
    CCPD_fn 86.7 86 98.6 98.3
    CCPD_rotate 92.3 93 99.5 99.5
    CCPD_weather 95.3 94.9 99.4 99.5
    CCPD_challenge 71.9 72.4 96.5 96.9
    CCPD整体 87.7 88.1 99 99.2
    下载: 导出CSV

    表  6  CRPD数据集上YOLOv8与TLP-YOLO的性能对比

    Table  6.   Performance comparison between YOLOv8 and TLP-YOLO on CRPD

    子数据集 AP50-95/% AP70/%
    YOLOv8 TLP-YOLO YOLOv8 TLP-YOLO
    CRPD_single 78.6 81.6 95.6 97.4
    CRPD_double 78.2 81.2 95.7 97
    CRPD_multi 77.6 80.7 95.3 96.6
    CRPD整体 77.9 80.9 95.4 96.8
    下载: 导出CSV

    表  7  不同优化方式对模型性能的影响

    Table  7.   Impact of different optimization methods on model performance

    实验序号 C2f_EMA SW-FPN Detect-Faster AP50-95/% AP70/% FLOPs/G
    1 81.6 96.9 8.2
    2 82.0 97.1 8.4
    3 83.2 97.3 12.3
    4 81.6 96.8 5.8
    5 83.5 97.7 12.7
    6 82.1 97.1 6.1
    7 83.4 97.5 7.4
    8 83.6 97.7 7.5
    下载: 导出CSV

    表  8  实验数据集上不同检测算法性能对比

    Table  8.   Performance comparison of different detection algorithms on the experimental dataset

    检测算法 AP70/% FLOPs/G FPS/(帧/s)
    Faster-RCNN 92.9 26.7
    SSD 94.4 58.0
    TE2E 94.2 4.5
    RPNet 94.5 61.0
    YOLOv5s 94.8 15.9 77.4
    YOLOv7 95.3 13.9 83.1
    YOLOv8 96.9 8.2 104.2
    TLP-YOLO 97.7 7.5 101.0
    下载: 导出CSV
  • [1] 邱彬, 李广友. 智能网联汽车数据安全管理研究[J]. 汽车工程学报, 2022, 12 (3): 307-313. doi: 10.3969/j.issn.2095-1469.2022.03.11

    QIU B, LI G Y. Research on data security management of intelligent connected vehicle[J]. Chinese Journal of Automotive Engineering, 2022, 12 (3): 307-313. (in Chinese) doi: 10.3969/j.issn.2095-1469.2022.03.11
    [2] 唐迪, 顾健, 张凯悦, 等. 数据脱敏技术发展趋势[J]. 保密科学技术, 2021, 127 (4): 4-11.

    TANG D, GU J, ZHANG K Y, et al. Development trend of data desensitization technology[J]. Science and Technology of Secrecy, 2021, 127 (4): 4-11. (in Chinese)
    [3] REN S Q, HE K M, GIRSHICK R, et al. Faster r-cnn: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [4] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: single shot multiBox detector[C]. The European Conference on Computer Vision, Amsterdam, Netherlands: Springer, 2016.
    [5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: IEEE, 2016.
    [6] 艾曼. 基于Faster-RCNN的车牌检测[J]. 计算机与数字工程, 2020, 48 (1): 174-177. doi: 10.3969/j.issn.1672-9722.2020.01.033

    AI M. License plate detection based on faster-rcnn[J]. Computer and Digital Engineering, 2020, 48 (1): 174-177. (in Chinese) doi: 10.3969/j.issn.1672-9722.2020.01.033
    [7] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: IEEE, 2016.
    [8] 马巧梅, 王明俊, 梁昊然. 复杂场景下基于改进YOLOv3的车牌定位检测算法[J]. 计算机工程与应用, 2021, 57(7): 198-208.

    MA Q M, WANG M J, LIANG H R. License plate location detection algorithm based on improved Yolov3 in complex scenes[J]. Computer Engineering and Applications, 2021, 57 (7): 198-208. (in Chinese)
    [9] XU Z B, YANG W, MENG A J, et al. Towards end-to-end license plate detection and recognition: a large dataset and baseline[C]. The 2018 European Conference on Computer Vision, Heidelberg, Germany: Springer, 2018.
    [10] REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. (2018-04-08)[2023-06-25]. https://arxiv.org/pdf/1804.02767.pdf.
    [11] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
    [12] 孙世昕, 马蕾, 李千目, 等. 基于深度学习的实时车牌检测与识别[J]. 现代交通与冶金材料, 2022, 2 (4): 61-67.

    SUN S X, MA L, LI Q M, et al. Real-time license plate detection and recognition based on deep learning[J]. Modern Transportation and Metallurgical Materials. 2022, 2(4): 61-67. (in Chinese)
    [13] 陈婷, 姚大春, 高涛, 等. 基于PReNet和YOLOv4融合的雨天交通目标检测网络[J]. 交通运输工程学报, 2022, 22 (3): 225-237.

    CHEN T, YAO D C, GAO T, et al. A fused network based on PReNet and YOLOv4 for traffic object detection in rainy environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22 (3): 225-237. (in Chinese)
    [14] FAN X D, ZHAO W. Improving robustness of license plates automatic recognition in natural scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18845-18854. doi: 10.1109/TITS.2022.3151475
    [15] 张逸凡, 聂琳真, 黄灏然, 等. 基于改进YOLOv5算法的道路交通参与者实时检测方法[J]. 交通信息与安全, 2024, 42 (1): 115-123. doi: 10.3963/j.jssn.1674-4861.2024.01.013

    ZHANG Y F, NIE L Z, HUANG H R, et al. A method of real-time detection for road traffic participants based on an improved yolov5 algorithm[J]. Journal of Transport Information and Safety, 2024, 42 (1): 115-123. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.01.013
    [16] OUYANG D, HE S, ZHAN J, et al. Efficient multi-scale attention module with cross-spatial learning[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece: IEEE, 2023.
    [17] CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher flops for faster neural networks[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada: IEEE, 2023.
    [18] WANG C Y, LIAO H Y M, WU Y H, et al. Cspnet: a new backbone that can enhance learning capability of cnn[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA: IEEE, 2020.
    [19] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA: IEEE, 2017.
    [20] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
    [21] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA: IEEE, 2020.
    [22] 邱天衡, 王玲, 王鹏, 等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58 (13): 63-73.

    QIU T H, WANG L, WANG P, et al. Research on object detection algorithm based on improved yolov5[J]. Computer Engineering and Applications, 2022, 58(13): 63-73. (in Chinese)
    [23] GONG Y X, DENG L J, TAO S, et al. Unified Chinese license plate detection and recognition with high efficiency[J]. Journal of Visual Communication and Image Representation, 2022, 86: 103541. http://arxiv.org/abs/2205.03582?context=cs.CV
    [24] WOO S H, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany: Springer, 2018.
    [25] CAO Y, XU J R, LIN S, et al. Gcnet: non-local networks meet squeeze-excitation networks and beyond[C]. 2019 IEEE/CVF International Conference on Computer Vision Workshop, Seoul, South Korea: IEEE, 2019.
    [26] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada: IEEE, 2023.
    [27] LI H, WANG P, SHEN C H. Toward end-to-end car license plate detection and recognition with deep neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (3): 1126-1136.
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  12
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 网络出版日期:  2025-03-08

目录

    /

    返回文章
    返回