留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多重客观指标表征的驾驶人接管绩效评估方法

王丹 朱曰莹 张策 林业

王丹, 朱曰莹, 张策, 林业. 基于多重客观指标表征的驾驶人接管绩效评估方法[J]. 交通信息与安全, 2024, 42(6): 55-63. doi: 10.3963/j.jssn.1674-4861.2024.06.006
引用本文: 王丹, 朱曰莹, 张策, 林业. 基于多重客观指标表征的驾驶人接管绩效评估方法[J]. 交通信息与安全, 2024, 42(6): 55-63. doi: 10.3963/j.jssn.1674-4861.2024.06.006
WANG Dan, ZHU Yueying, ZHANG Ce, LIN Ye. An Evaluation Model for Driver Takeover Performance Based on Multi-objective Indicators Representation[J]. Journal of Transport Information and Safety, 2024, 42(6): 55-63. doi: 10.3963/j.jssn.1674-4861.2024.06.006
Citation: WANG Dan, ZHU Yueying, ZHANG Ce, LIN Ye. An Evaluation Model for Driver Takeover Performance Based on Multi-objective Indicators Representation[J]. Journal of Transport Information and Safety, 2024, 42(6): 55-63. doi: 10.3963/j.jssn.1674-4861.2024.06.006

基于多重客观指标表征的驾驶人接管绩效评估方法

doi: 10.3963/j.jssn.1674-4861.2024.06.006
基金项目: 

国家自然科学基金项目 52072259

国家自然科学基金项目 51505332

详细信息
    作者简介:

    王丹(1992—),博士研究生. 研究方向:人机交互、驾驶行为与生理. E-mail: wangdan@mail.tust.edu.cn

    通讯作者:

    林业(1960—),博士,教授. 研究方向:自动驾驶车辆、功能安全和可靠性、耐久性、车辆动力学和NVH. E-mail: yier.lin@tust.edu.cn

  • 中图分类号: U461.91

An Evaluation Model for Driver Takeover Performance Based on Multi-objective Indicators Representation

  • 摘要: 驾驶人的接管绩效对于有条件自动驾驶车辆的安全性、驾乘体验与接受度具有重要意义。为了探究驾驶人行为对接管绩效的影响机理,提出1个代表接管绩效的综合评价表征指标——接管绩效水平(takeover performance level,TOPL),并构建基于改进EWM-TOPSIS的评估模型。该模型通过熵权法(entropy weight method,EWM)确定各指标客观权重,利用基于最优解偏好排序技术(technique for order preference by similarity to ideal solution,TOPSIS)模型中正负理想解对各指标进行编码映射。为了验证模型的有效性,招募46名驾驶人参与人机共驾接管实验,并提取表征驾驶人接管绩效安全性、舒适性和平稳性的多维度评价指标,深入探讨驾驶人在接管过程中执行的非驾驶相关任务,以及接管时间预算对驾驶人接管绩效水平的影响机理。进一步地,分析驾驶人年龄和标准型非驾驶相关任务完成绩效对TOPL的影响机理。研究结果表明:驾驶人年龄,非驾驶相关任务完成绩效对TOPL有显著影响,处于5万~10万km和0~5万km,10万~100万km之间的驾驶里程存在显著差异。车辆的最大横摆角速率、最大横向加速度,最大横向速度,油门深度标准差与TOPL之间存在显著的负相关关系,而接管边界时距与TOPL呈现显著的正相关关系。针对不同接管时间预算与非驾驶相关任务完成绩效,TOPL在接管时间预算为4 s时最低,接管程度紧急下的接管绩效水平较低。当驾驶人完成非驾驶相关任务低于60分时,TOPL最高,并且随着分数的增大TOPL有下降趋势。

     

  • 图  1  实验设计及模型构建

    Figure  1.  Experimental design and model construction

    图  2  评估TOPL接管绩效水平实验流程图

    Figure  2.  Evaluation of TOPL experimental flowchart

    图  3  接管实验平台及实验测试场景

    Figure  3.  Experiment platform of takeover and test scenario

    图  4  眼动数据采集实验流程

    Figure  4.  Eye tracking data collection experimental process

    图  5  基于EWM-TOPSIS的TOPL判别结果

    Figure  5.  Discrimination results of TOPL based on EWM-TOPSIS

    图  6  基于改进EWM-TOPSIS模型的指标相关性分析

    Figure  6.  Correlation analysis of indicators based on improved EWM-TOPSIS model

    图  7  驾驶人年龄、驾驶里程与TOPL的显著性分析

    Figure  7.  Significance analysis of driver age, driving mileage, and TOPL

    图  8  不同TB的NDRTs完成绩效与TOPL显著性分析

    Figure  8.  Significance analysis of performance in NDRTs、TB and TOPL

    图  9  NDRTs与TB对TOPL显著性分析

    Figure  9.  Significant analysis of non-driving task performance on TOPL under different TB

    图  10  TOPL与TOPI(Agrawal et al.(2021))实验对比结果

    Figure  10.  Comparison of the proposed TOPL with the TOPI from Agrawal et al. (2021)

    表  1  TOPL评价维度与指标

    Table  1.   Dimensions and indicators of TOPL evaluation

    评价一级维度 评价二级维度 评价指标 变量符号
    接管能力 接管时间/ s x1
    接管边界时距/s x2
    首次注视时间/s x3
    安全性 平均眨眼率/% x4
    风险感知能力 平均凝视时间/ ms x5
    凝视次数/n x6
    平均扫视时间/ ms x7
    最大横摆角速率/(rad/s) x8
    横向反应强度 最大横向速度/(m/s) x9
    舒适性 最大横向加速度/(m/s2 x10
    纵向反应强度 最大纵向速度/(m/s) x11
    最小纵向加速度/(m/s2 x12
    平稳性 接管质量 横向偏移标准差/m x13
    刹车深度标准差/% x14
    接管平滑性 转向角度标准差/() x15
    油门深度标准差/% x16
    下载: 导出CSV

    表  2  基于熵权法赋权的各指标统计分析

    Table  2.   Statistical analysis of each index based on entropy weighting methodology

    变量 均值 标准差 最大值 最小值
    x1 2.902 0.844 9.406 0.128
    x2 4.098 1.947 8.994 -2.151
    x3 2.553 2.894 10 0.004
    x4 7.084 6.214 51.446 0.028
    x5 944.6 534.07 4 335.8 5.903
    x6 47.88 32.98 430 1
    x7 61.14 141.93 3 656.8 16
    x8 17.68 10.305 79.352 0.042
    x9 4.088 7.701 91.100 0.023
    x10 0.469 0.2098 1.681 0.004
    x11 80.65 3.904 87.41 54.096
    x12 -0.821 0.190 -0.010 -1.6 899
    x13 1.900 2.649 51.091 0.009
    x14 409.54 1 390.44 42 209.6 0
    x15 2 661.67 6 470.75 100 001 4.9E-32
    x16 3 873.6 46 487.2 799 676.5 0
    下载: 导出CSV

    表  3  NDRTs完成绩效与TOPL显著性分析

    Table  3.   Significance analysis of performance in NDRTs and TOPL

    MP25P75 Kruskal-Wallis检验统计量H p
    分数 0~60(n=251) 60~70(n=99) 70~80(n=128) 80~90(n=133) 90~100(n=93)
    TOPL 0.333(0.3,0.4) 0.312(0.3,0.4) 0.312(0.3,0.4) 0.297(0.3,0.4) 0.294(0.2,0.3) 27.488 0.000**
    注: n为统计总量产
    下载: 导出CSV

    表  4  标准型NDRTs与TOPL显著性分析

    Table  4.   Significance analysis of standard NDRTs and TOPL

    MP25P75 Kruskal-Wallis检验统计量H p
    NDRTs back声音(n=176) 1-back图片(n=176) 2-back声音(n=176) 2-back图片(n=176) 监控(n=220)
    TOPL 0.300(0.2,0.4) 0.325(0.3,0.4) 0.312(0.3,0.4) 0.316(0.3,0.4) 0.297(0.2,0.3) 23.274 0.000**
    注:n为统计总量。
    下载: 导出CSV
  • [1] SAE International. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles: SAE J3016[S]. Warrendale, PA, USA: SAE, 2021.
    [2] WEAVER B W, DELUCIA P R. A systematic review and meta-analysis of takeover performance during conditionally automated driving[J]. Human Factors, 2022, 64 (7) : 1227-1260. doi: 10.1177/0018720820976476
    [3] DU N, ZHOU F, PULVER E M, et al. Predicting driver takeover performance in conditionally automated driving[J]. Accident Analysis & Prevention, 2020, 148: 105748.
    [4] AGRAWAL S, PEETA S. Evaluating the impacts of driver' s pre-warning cognitive state on takeover performance under conditional automation[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 83: 80-98. doi: 10.1016/j.trf.2021.10.004
    [5] WU C, WU H, LYU N, et al. Take-over performance and safety analysis under different scenarios and secondary tasks in conditionally automated driving[J]. IEEE Access, 2019(7) : 136924-136933.
    [6] XU L, GUO L, GE P, et al. Effect of multiple monitoring requests on vigilance and readiness by measuring eye movement and takeover performance[J]. Transportation Research Part F: Psychology and Behaviour, 2022, 91: 179-190. doi: 10.1016/j.trf.2022.10.001
    [7] WU Y, ABDEL-ATY M, PARK J, et al. Effects of real-time warning systems on driving under fog conditions using an empirically supported speed choice modeling framework[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 97-110. doi: 10.1016/j.trc.2017.10.025
    [8] AYOUB J, DU N, YANG X J, et al. Predicting driver takeover time in conditionally automated driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7) : 9580-9589. doi: 10.1109/TITS.2022.3154329
    [9] CAO Y, ZHOU F, PULVER E M, et al. Towards standardized metrics for measuring takeover performance in conditionally automated driving: a systematic review[C]. The Human Factors and Ergonomics Society Annual Meeting, Los Angeles: SAGE Publications, 2021.
    [10] WU H, WU C, LYU N, et al. Does a faster takeover necessarily mean it is better? A study on the influence of urgency and takeover-request lead time on takeover performance and safety[J]. Accident Analysis & Prevention, 2022, 171: 106647.
    [11] GOLD C, DAMBÖCK D, LORENZ L, et al. "Take over!" How long does it take to get the driver back into the loop?[C]. The Human Factors and Ergonomics Society Annual Meeting, 2013, 57 (1) : 1938-1942.
    [12] SHINAR D, TRACTINSKY N, COMPTON R. Effects of practice, age, and task demands, on interference from a phone task while driving[J]. Accident Analysis & Prevention, 2005, 37 (2) : 315-326.
    [13] KIM H J, YANG J H. Takeover requests in simulated partially autonomous vehicles considering human factors[J]. IEEE Transactionson Human-Machine Systems, 2017, 47 (5) : 735-740. doi: 10.1109/THMS.2017.2674998
    [14] LI Q, WANG Z, WANG W, et al. An adaptive time budget adjustment strategy based on a takeover performance model for passive fatigue[J]. IEEE Transactions on Human-Machine Systems, 2021, 52 (5) : 1025-1035.
    [15] JAROSCH O, BENGLER K. Rating of takeover performance in conditionally automated driving using an expert-rating system[C]. Advances in Human Aspects of Transportation, Orlando, Florida, USA: AHFE, 2018.
    [16] NAUJOKS F, WIEDEMANN K, SCHÖMIG N, et al. Expert-based controllability assessment of control transitions from automated to manual driving[J]. MethodsX, 2018(5) : 579-592.
    [17] RADLMAYR J, RATTER M, FELDHÜTTER A, et al. Take-overs in level 3 automated driving-proposal of the takeover performance score(tops)[C]. 20th Congress of the International Ergonomics Association (IEA 2018), Florence, Italy: IEA, 2018.
    [18] LI Q, WANG Z, WANG W, et al. A human-centered comprehensive measure of takeover performance based on multiple objective metrics[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (4) : 4235-4250. doi: 10.1109/TITS.2022.3233623
    [19] DU N, YANG X J, ZHOU F. Psychophysiological responses to takeover requests in conditionally automated driving[J]. Accident Analysis & Prevention, 2020, 148: 105804.
    [20] LOUW T, KUO J, ROMANO R, et al. Engaging in NDRTs affects drivers' responses and glance patterns after silent automation failures[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 62: 870-882. doi: 10.1016/j.trf.2019.03.020
    [21] COHEN J. Statistical power analysis for the behavioral science. [J]. Technometrics 1988, 31 (4) : 499-500.
    [22] ERIKSSON A, STANTON N A. Takeover time in highly automated vehicles: noncritical transitions to and from manual control[J]. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2017, 59 (4): 689-705. doi: 10.1177/0018720816685832
    [23] WAN J, WU C. The effects of lead time of take-over request and nondriving tasks on taking-over control of automated vehicles[J]. IEEE Transactions on Human-Machine Systems, 2018: 582-591.
    [24] NAUJOKS F, HÖFLING S, PURUCKER C, et al. From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and takeover performance[J]. Accident Analysis & Prevention, 2018, 121: 28-42.
    [25] 王文军, 李清坤, 曾超, 等. 自动驾驶接管绩效的影响因素、模型与评价方法综述[J]. 中国公路学报, 2023, 36(9) : 202-224.

    WANG W J, LI Q K, ZENG C, et al. Reviewo tfakeover performance of automated D riving: influencing factors, models, and evaluation methods[J]. China Journal of Highway and Transport, 2023, 36 (9) : 202-224. (in Chinese)
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24
  • 网络出版日期:  2025-03-08

目录

    /

    返回文章
    返回