留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数据与模型驱动的高速公路服务区交通自洽能源系统状态估计方法

石志鹏 金雨哲 柯吉 王飚 张懿璞

石志鹏, 金雨哲, 柯吉, 王飚, 张懿璞. 数据与模型驱动的高速公路服务区交通自洽能源系统状态估计方法[J]. 交通信息与安全, 2024, 42(5): 173-184. doi: 10.3963/j.jssn.1674-4861.2024.05.016
引用本文: 石志鹏, 金雨哲, 柯吉, 王飚, 张懿璞. 数据与模型驱动的高速公路服务区交通自洽能源系统状态估计方法[J]. 交通信息与安全, 2024, 42(5): 173-184. doi: 10.3963/j.jssn.1674-4861.2024.05.016
SHI Zhipeng, JIN Yuzhe, KE Ji, WANG Biao, ZHANG Yipu. A Method for Data and Model Driven Estimation of Traffic Self-Consistent Energy System States in Highway Service Areas[J]. Journal of Transport Information and Safety, 2024, 42(5): 173-184. doi: 10.3963/j.jssn.1674-4861.2024.05.016
Citation: SHI Zhipeng, JIN Yuzhe, KE Ji, WANG Biao, ZHANG Yipu. A Method for Data and Model Driven Estimation of Traffic Self-Consistent Energy System States in Highway Service Areas[J]. Journal of Transport Information and Safety, 2024, 42(5): 173-184. doi: 10.3963/j.jssn.1674-4861.2024.05.016

数据与模型驱动的高速公路服务区交通自洽能源系统状态估计方法

doi: 10.3963/j.jssn.1674-4861.2024.05.016
基金项目: 

国家重点研发计划项目 2021YFB1600200

中央高校基本科研业务费专项项目 300102383202

详细信息
    作者简介:

    石志鹏(2000—),硕士研究生. 研究方向:交通能源融合. E-mail: 2022232067@chd.edu.cn

    通讯作者:

    张懿璞(1985—),博士,教授. 研究方向:交通能源融合. E-mail: zyipu@chd.edu.cn

  • 中图分类号: U495

A Method for Data and Model Driven Estimation of Traffic Self-Consistent Energy System States in Highway Service Areas

  • 摘要: 构建高速公路服务区交通自洽能源系统是实现交通与能源融合的关键技术,而对其进行系统状态估计是近年来的研究重点。考虑到高速公路服务区交通自洽能源系统的复杂性和多样性,单一的数据或模型驱动方法难以全面、准确地估计系统实时状态。因此,研究了1种数据与模型驱动的复合方法,旨在实现更高效的系统状态估计。在数据驱动方面,尽管基于深度学习的光伏功率预测模型性能优越,但通常忽视输入特征间的互相依赖机制。为此,建立了基于自注意力机制(self-attention, SA)的时间卷积-双向长短期记忆网络(time convolution-bidirectional long short-term memory network,TCN-BiLSTM-SA),用于预测系统光伏出力情况。SA重新分配TCN-BiLSTM输入特征的权重,从而提升时空信息提取的有效性。在模型驱动方面,考虑高速公路路网车流量分布,建立了高速公路电动汽车出行轨迹概率模型;基于蒙特卡洛模拟法抽取初始和充电时电池容量,综合考虑车主用车习惯、环境温度等多种不确定性因素,来预测电动汽车充电负荷时空分布。通过利用新疆某高速公路服务区交通自洽能源系统的实际数据进行仿真验证,结果表明:在光伏预测上,所提模型在平均绝对误差、均方根误差和决定系数这3个指标上,相较于最佳模型分别提高了25.3%、16.7%、0.7%;在负荷预测上,所提模型有效预测高速公路电动汽车的充电负荷时空分布;在系统状态估计上,所提方法的精度达到了89.1%。

     

  • 图  1  所提模型图

    Figure  1.  Proposedmodel diagram

    图  2  不同典型日日均车流量对比

    Figure  2.  Comparison of average daily traffic volume for different typical days

    图  3  EV充电负荷计算流程

    Figure  3.  EV charging load calculation process.

    图  4  所选高速路段的路网拓扑

    Figure  4.  The road network topology of the selected expressway section.

    图  5  各模型光伏出力预测效果对比

    Figure  5.  Comparison of Photovoltaic Output Prediction Effects Among Different Models

    图  6  添加自注意力前后模型预测结果对比

    Figure  6.  Comparsion of model predictions before and after adding self-attention

    图  7  典型日车辆出行时间概率分布

    Figure  7.  Probability distribution of vehicle travel time on typical days

    图  8  冬季-夏季典型日气温分布

    Figure  8.  Temperature distribution on typical days in summer and winter

    图  9  夏季典型日充电负荷分布

    Figure  9.  Charging load distribution on typical days in summer

    图  10  冬季典型日充电负荷分布

    Figure  10.  Charging load distribution on typical days in winter

    图  11  系统储能容量变化曲线

    Figure  11.  Change curve of system energy storage capacity

    表  1  系统运行状态划分

    Table  1.   Classification of system operation status

    系统运行状态 表现形式
    能量不足 $\left\{\begin{array}{l} P_{\text {load }}(t)-P_{\mathrm{pv}}(t)>P_{\mathrm{grid} \max }(t)+P_{f \max }(t)(\text { 并网 }) \\ P_{\text {load }}(t)-P_{\mathrm{pv}}(t)>P_{\mathrm{dg} \max }(t)+P_{f \max }(t)(\text { 离网 }) \end{array}\right.$
    能量严重不足 $\left\{\begin{array}{l} P_{\text {load }}(t)-P_{\mathrm{pv}}(t)>P_{\text {grid max }}(t)+P_{f \text { max }}(t)(\text { 并网 }) \\ P_{\text {load }}(t)-P_{\mathrm{pv}}(t)>P_{\mathrm{dg} \text { max }}(t)+P_{f \text { max }}(t)(\text { 离网 }) \end{array}\right.$
    能量最优利用 $P_{\text {load }}(t)-P_{\mathrm{pv}}(t)=0$
    能量充足 $\left\{\begin{array}{l} 0<P_{\text {load }}(t)-P_{\mathrm{pv}}(t) \leqslant P_{\text {grid max }}(t)+P_{f \text { max }}(t) \text { (并网) } \\ 0<P_{\text {load }}(t)-P_{\mathrm{pv}}(t) \leqslant P_{\mathrm{dg} \max }(t)+P_{f \text { max }}(t)(\text { 离网 }) \\ P_{f \text { max }}(t)=\left[S O C(t-1)-S O C_{\min }\right]\cdot E_b \end{array}\right.$
    $\left\{\begin{array}{l} 0<P_{\mathrm{pv}}(t)-P_{\text {load }}(t) \leqslant P_{c \max }(t) \\ P_{c \max }(t)=\left[S O C_{\max }-\operatorname{SOC}(t-1)\right] \cdot E_b \end{array}\right.$
    能量过剩 $P_{\mathrm{pv}}(t)-P_{\text {1oad }}(t)>P_{c \max }(t)$
    下载: 导出CSV

    表  2  各模型在光伏数据集上预测效果对比

    Table  2.   Comparison of prediction effects of various models in PV datasets

    模型类别 评价指标
    MAE RMSE R2
    本文方法 9.203 1 11.730 2 0.889 3
    TCN-BiLSTM 9.456 6 11.897 5 0.881 5
    BiLSTM 11.251 0 13.238 1 0.816 5
    CNN 14.358 0 23.850 0 0.751 1
    RF 16.781 1 29.004 5 0.749 2
    下载: 导出CSV

    表  3  系统状态估计结果

    Table  3.   Results of system state estimation

    系统状态类别 系统状态总数 验证集状态数 相应时刻正确估计的状态数 精度/%
    能量不足 1 783 325 304 93.5
    能量严重不足 0 0
    能量最优利用 73 15 9 60
    能量充足 1 402 232 211 90.9
    能量过剩 438 52 32 61.5
    总计 3 696 624 556 89.1
    下载: 导出CSV
  • [1] 杨勇平, 武平, 程鹏, 等. 我国陆路交通能源系统发展战略研究[J]. 中国工程科学, 2022, 24(3): 153-162.

    YANGY P, WU P, CHENG P, etal. Development strategy for energy system ofland transport in China[J]. Engineering Sciences, 2022, 24(3): 153-162. (in Chinese)
    [2] 蒋海峰, 黄森炎, 刘志强, 等. 公路交通设施与清洁能源融合创新技术与发展[J]. 公路交通科技, 2020, 37(增刊2): 1-5.

    JIANG H F, HUANG S Y, LIU Z Q, et a-l. Innovative technology and development of integration of highway trafficfacilities and clean energy[J]. Journal of Highway and Transportation Research and Development, 2020, 37(S2): 1-5. (in Chinese)
    [3] 李瑞杰. 面向绿色低碳的韧性公路交通-能源融合发展技术和展望[J]. 交通节能与环保, 2024, 20(5): 1-7.

    LI R J. Development technology and prospect for green and low-carbon resilient road transportenergy Integration[J]. Transport Energy Conservation & Environmental, 2024, 20 (5): 1-7. (in Chinese).
    [4] 贾利民, 师瑞峰, 吉莉, 等. 我国道路交通与能源融合发展战略研究[J]. 中国工程科学, 2022, 24(3): 163-172.

    JIA L M, SHI R F, JI L, et al. Road transportation and energy integration strategy in China[J]. Strategic Study of CAE, 2022, 24(3): 163-172. (in Chinese).
    [5] 毛宁, 于琦, 刘杰, 等. 交能融合宏观策略与技术路径[J]. 中国公路, 2022(22): 28-31.

    MAO N, YU Q, LIU J, et al. Macro strategies and technical pathways for the integration of transportation and energy[J]. China Highway, 2022(22): 28-31. (in Chinese).
    [6] 桑博, 张涛, 刘亚杰, 等. 多微电网能量管理系统研究综述[J]. 中国电机工程学报, 2020, 40(10): 3077-3093.

    SANG B, ZHANG T, LIU Y J, et al. Energy management system research of multi-microgrid: a review[J]. Proceedings of the CSEE, 2020, 40(10): 3077-3093. (in Chinese)
    [7] 刘继文, 侯强. 基于文献计量的微电网博弈调度研究热点分析[J]. 电气技术, 2023, 24(6): 13-20. doi: 10.3969/j.issn.1673-3800.2023.06.003

    LIU J W, HOU Q, Hotspots analysis of research and development trend of microgrid game dispatching based on information visualization[J]. Electrical Engineering, 2023, 24(6): 13-20. (in Chinese) doi: 10.3969/j.issn.1673-3800.2023.06.003
    [8] 汪诗怡, 艾芊. 含微电网的电力系统状态估计研究[J]. 电器与能效管理技术, 2014(16): 33-38.

    WANG S Y, AI Q, Analysis on power system state estimation with microgrid[J]. Low Voltage Apparatus, 2014(16): 33-38. (in Chinese)
    [9] RANA M, LI L. Kalman filter based microgrid state estimation using the internet of things communication network[C]. 12th International Conference on Information Technology-New Generations, Nevada USA: IEEE, 2015.
    [10] SUN H, FENG G, NIKOVSKI D, et al. Dynamic state estimation based on unscented Kalman filter and very short-term load and distributed generation forecasting[C]. International Conference on Power System Technology. Wollongong, NSW, Australia: IEEE, 2016.
    [11] YANG S, TAN Y, TAN Q, et al. State estimation of electromagnetic scanning micro-mirrors using unscented Kalman filtering method[C]. International Conference on Realtime Computing and Robotics(RCAR), Datong, China: IEEE, 2023.
    [12] 刘晓莉, 曾祥晖, 黄翊阳, 等. 联合粒子滤波和卷积神经网络的电力系统状态估计方法[J]. 电网技术, 2020, 44(9): 3361-3367.

    LIU X L, ZENG X H, HUANG Y Y et al. State estimation based on particle filtering and convolutional neural networks for power systems[J]. Power System Technology, 2020, 44 (9): 3361-3367. (in Chinese)
    [13] MBUNGU N T, ISMAIL A A, ALSHAHI M, et al. Control and estimation techniques applied to smart microgrids: a review[J]. Renewable and Sustainable Energy Reviews, 2023: 113251.
    [14] 黄小庆, 陈颉, 陈永新, 等. 大数据背景下的充电站负荷预测方法[J]. 电力系统自动化, 2016, 40(12): 68-74.

    HUANG X Q, CHEN J, CHEN Y X, et al. Charging station load forecasting method in the context of big data[J]. Automation of Electric Power System, 2016, 40(12): 68-74. (in Chinese).
    [15] 张明辉, 周亚同, 孔晓然. 基于深度混合储备池计算模型的短期电力负荷预测[J]. 电网技术, 2022, 46(12): 4751-4762.

    ZHANG M H, ZHOU Y T, KONG X R. Short-term electrical load prediction based on deep hybrid reservoir calculation model[J]. Power System Technology, 2022, 46(12): 4751-4762. (in Chinese)
    [16] 锁军, 李龙, 贺瀚青, 等. 考虑交通路况的电动汽车充电负荷预测[J]. 电网与清洁能源, 2022, 38(10): 141-147.

    SUO J, LI L, HE H Q, et al. Load forecasting of electric vehicle charging considering traffic conditions[J]. Power System and Clean Energy, 2022, 38(10): 141-147. (in Chinese)
    [17] 罗浩成, 胡泽春, 张洪财. 环境温度对电动汽车充电负荷的影响分析[J]. 电力建设, 2015, 36(7): 69-74.

    LUO H C, HU Z C, ZHANG H C. Effect analysis of ambient temperature on electric vehicle charging load[J]. Electric Power Construction, 2015, 36(7): 69-74. (in Chinese)
    [18] 葛少云, 冯亮, 刘洪, 等. 考虑电量分布及行驶里程的高速公路充电站规划[J]. 电力自动化设备, 2013, 33(7): 111-116.

    GE S Y, FENG L, LIU H, et al. Planning of charging stations on highway considering power distribution and driving mileage[J]. EIectric Power Automation Equipment, 2013, 33(7): 111-116. (in Chinese)
    [19] MERAL M E, DINCER F. A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2176-2184.
    [20] 周浩杰, 杨建卫, 王尊, 等. 基于LSTM光伏发电功率超短期预测模型研究[J]. 电源技术, 2023, 47(6): 785-789.

    ZHOU H J, YANG J W, WANG Z, et al. Research on ultrashort-term prediction model of photovoltaic power generation based on LSTM[J]. Chinese Journal of Power Sources, 2023, 47(6): 785-789. (in Chinese).
    [21] 陈禹帆, 温蜜, 张凯, 等. 基于相似日匹配及TCN-Attention的短期光伏出力预测[J]. 电测与仪表2022, 59(10): 108-116.

    CHEN Y F, WEN M, ZHANG K, et al. Short-term photovoltaic output forecasting based on similar day matching and TCN-Attention. [J]. Electrial Measurement and Instrumentation, 2022, 59(10): 108-116. (in Chinese).
    [22] LI L L, WEN S Y, TSENG M L, et al. Renewable energy prediction: a novel short-term prediction model of photovoltaic output power[J]. Journal of Cleaner Production, 2019, 228: 359-375.
    [23] 焦卫东, 杨蓓. MDAT-Net: 1种融合MSC和时空注意力的TCN航迹预测方法[J]. 北京航空航天大学学报, 2024.

    JIAO W D, YANG B. MDAT-Net: A TCN trajectory prediction method fusing MSC and spatio-temporal attention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024. (in Chinese).
    [24] 张淑清, 李君, 姜安琦, 等. 基于FPA-VMD和BiLSTM神经网络的新型两阶段短期电力负荷预测[ J]. 电网技术, 2022, 46(8): 3269.

    ZHANG S Q, LI J, JIANG A Q, et al. A novel two-stage model based on FPA-VMD and BiLSTM neural network for shortterm power load forecasting[J]. Power System Technology, 2022, 46(8): 3269. (in Chinese)
    [25] 刘清梅, 万明, 严利鑫, 等. 基于集合经验模态分解降噪和优化LSTM的道路交通事故预测[J]. 交通信息与安全, 2023, 41(5): 12-23.

    LIU Q M, WAN M, ZHANG Z Q, et al. A method for predicting traffic accidents based on an ensemble empirical mode decomposition and an optimized LSTM model[J]. Journal of Transport Information and Safety, 2023, 41(5): 12-23. (in Chinese).
    [26] 付国忠, 杜华, 张志强, 等. 基于注意力机制和CNN-BiLSTM模型的滚动轴承剩余寿命预测[J]. 核动力工程, 2023, 44(增刊2): 33-38.

    FU G Z, DU H, ZHANG Z Q, et al. Remaining useful life prediction of rolling bearings based on attention mechanism and CNN-BiLS-TM[J]. Nuclear Power Engineering, 2023, 44 (S2): 33-38. (in Chinese).
    [27] 葛少云, 朱林伟, 刘洪, 等. 基于动态交通仿真的高速公路电动汽车充电站规划[J]. 电工技术学报, 2018, 33(13): 2991-3001.

    GE S Y, ZHU L W, LIU H, et al. Optimal deployment of electric vehicle charging stations on the highway based on dynamic traffic simulation[J]. Transactions Of China Electrotec-hnical Society, 2018, 33(13): 2991-3001. (in Chinese)
    [28] 刘珏, 穆云飞, 董晓红, 等. 考虑交通时滞的配电-交通耦合系统协同优化运行策略[J/OL]. 电力系统及其自动化学报[2024-10-08].

    LIU Y, MU Y F, DONG X H, et al. A collaborative optimization strategy for power-traffic coupling system considering time delay[J/OL]. Proceedings of the CSU-EPSA[2024-10-08]. (in Chinese)
    [29] BAE S, KWASINSKI A. Spatial and temporal model of electric vehicle charging demand[J]. IEEE Transactions on Smart Grid, 2011, 3(1): 394-403.
    [30] 葛少云, 冯亮, 刘洪, 等. 考虑电量分布及行驶里程的高速公路充电站规划[J]. 电力自动化设备, 2013, 33(7): 111-116.

    GE S Y, FENG L, LIU H, et al. Plug-and-play technology applied in microgrid and utilitygrid[J]. Electric Power Automation Equipment, 2013, 33(7): 111-116. (in Chinese)
    [31] ARIAS M B, KIM M, BAE S. Prediction of electric vehicle charging-power demand in realistic urban traffic networks[J]. Applied Energy, 2017, 195: 738-753.
    [32] 龙雪梅, 杨军, 吴赋章, 等. 考虑路网-电网交互和用户心理的电动汽车充电负荷预测[J]. 电力系统自动化, 2020, 44 (14): 86-93.

    LONG X M, YANG J, WU F Z, et al. Prediction of electric vehicle charging load considering interaction between road network and power grid and user's psychology[J]. Automation of Electric Power Systems, 2020, 44(14): 86-93. (in Chinese).
    [33] MA H Y, WANG J H, ZHENG T, et al. A model for electric vehicle charging load forecasting based on simulated driving path[C]. 4th Asia Conference on Power and Electrical Engineering, Hangzhou, China: ACPEE, 2019.
    [34] MEGAN. A Electric range for the nissan leaf & chevrolet volt in coldweather[OL]. (2013-12-16). [2015-05-20]. http://www.Fleetcarma.com/nissan-leaf-chevrolet-volt-cold-weaer-range-loss.
    [35] 王海玲, 张美霞, 杨秀. 基于气温影响的电动汽车充电需求预测[J]. 电测与仪表, 2017, 54(23): 123-128.

    WANG H L, ZHANG M X, YANG X. Electric vehicle charging demand forecasting based on influence of weather and temperature[J]. Electrical Measurement & Instrumentation, 2017, 54(23): 123-128. (in Chinese)
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  13
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31

目录

    /

    返回文章
    返回