[1] |
RIFKIN J. The third industrial revolution: how lateral power is transforming energy, the economy, and the world[M]. New York: Palgrave MacMillan, 2011.
|
[2] |
董朝阳, 赵俊华, 文福拴, 等. 从智能电网到能源互联网: 基本概念与研究框架[J]. 电力系统自动化, 2014, 38(15): 1-11.DONG Z Y, ZHAO J H, WEN F S, et al. From smart grid to energy internet: basic concept and research framework[J]. Automation of Electric Power Systems, 2014, 38(15): 1-11. (in Chinese)
|
[3] |
孙宏斌, 郭庆来, 潘昭光. 能源互联网: 理念、架构与前沿展望[J]. 电力系统自动化, 2015, 39(19): 1-8SUN H B, GUO Q L, PAN Z G. Energy internet: concept, architecture and frontier outlook[J]. Automation of Electric Power Systems, 2015, 39(19): 1-8(in Chinese)
|
[4] |
胡海涛, 郑政, 何正友, 等. 交通能源互联网体系架构及关键技术[J]. 中国电机工程学报, 2018, 38(1): 12-24HU H T, ZHENG Z, HE Z Y, et al. The framework and key technologies of traffic energy internet[J]. Proceedings of the CSEE, 2018, 38(1): 12-24(in Chinese)
|
[5] |
韦晓广, 高仕斌, 臧天磊, 等. 社会能源互联网: 概念、架构和展望[J]. 中国电机工程学报, 2018, 38(17): 4969-4986.WEI X G, GAO S B, ZANG T L, et al. Social energy internet: concept, architecture and outlook[J]. Proceedings of the CSEE, 2018, 38(17): 4969-4986. (in Chinese)
|
[6] |
TIAN Z. System energy optimisation strategies for dc railway traction power networks[D]. Birmingham: University of Birmingham, 2017.
|
[7] |
WU C. Intelligent train operation with on-board energy storage device: an energy-saving perspective[D]. Liverpool: The University of Liverpool, 2021.
|
[8] |
ALNUMAN H. Control techniques for energy management using energy storage in DC electric railways[D]. Sheffield: University of Sheffield(United Kingdom), 2021.
|
[9] |
胡田飞, 刘济华, 李天峰, 等. 铁路与新能源融合发展现状及展望[J]. 中国工程科学, 2023, 25(2): 122-132.HU T F, LIU J H, LI T F, et al. Current status and prospect of the integration of railway and new energy[J]. Strategic Study of CAE, 2023, 25(2): 122-132. (in Chinese)
|
[10] |
FEDELE E, IANNUZZI D, DEL PIZZO A. Onboard energy storage in rail transport: review of real applications and techno-economic assessments[J]. IET Electrical Systems in Transportation, 2021, 11(4): 279-309. doi: 10.1049/els2.12026
|
[11] |
GAO M Y, SU C G, CONG J L, et al. Harvesting thermoelectric energy from railway track[J]. Energy, 2019, 180: 315-29. http://www.xueshufan.com/publication/2946239175
|
[12] |
WU C X, LU S F, XUE F, et al. Earth potential as the energy storage in rail transit system - on a vertical alignment optimization problem[C]. 21st IEEE International Conference on Intelligent Transportation Systems(ITSC), Maui, HI: IEEE, 2018.
|
[13] |
林立, 孟学雷, 程晓卿, 等. 考虑碳排放效果的城轨列车开行方案编制方法[J]. 交通信息与安全, 2023, 41(5): 176-184. doi: 10.3963/j.jssn.1674-4861.2023.05.018LIN L, MENG X L, CHENG X Q, et al. A method for developing service plan of urban rail train considering carbon emissions impacts[J]. Journal of Transport Information and Safety, 2023, 41(5): 176-184. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.018
|
[14] |
LU J, ZHU C, LI X. Research on the recovery and reuse method of train regenerative braking energy based on the decommissioned equipment of EMU trains[J]. Journal of Electrical Engineering & Technology, 2023, 18(5): 3941-3949. doi: 10.1007/s42835-023-01433-y
|
[15] |
CHEN J Y, GE Y B, WANG K, et al. Integrated regenerative braking energy utilization system for multi-substations in electrified railways[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 298-310.
|
[16] |
KHODAPARASTAN M. Recuperation of regenerative braking energy in electric rail transit systems[D]. New York: The City College of New York, 2020.
|
[17] |
LI X, ZHU C, LIU Y. Traction power supply system of China high-speed railway under low-carbon target: form evolution and operation control[J]. Electric Power Systems Research, 2023, 223. doi: 10.1016/j.epsr.2023.109682
|
[18] |
陈冲, 贾利民, 赵天宇, 等. 去碳化导向的轨道交通与新能源融合发展—形态模式、解决方案和使/赋能技术[J]. 电工技术学报, 2023, 38(12): 3321-3337CHEN C, JIA L M, ZHAO T Y, et al. Decarbonization-oriented rail transportation and renewable energy integration development—configurations, solutions, and enabling/empowering technologies[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3321-3337. (in Chinese)
|
[19] |
GEORGE N, CHOWDHURY S P D. Roof-top solar power augmentation to auxiliary supply of passenger train[C]. 2018 IEEE PES/IAS PowerAfrica, Cape Town, South Africa, 2018.
|
[20] |
沙宽. 新能源与铁路融合发展模式及其潜力研究[D]. 北京: 北京交通大学, 2022.SHA K. Investigation on development patterns and its potential of renewable energy-integrated rail sector[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
|
[21] |
张舜, 张蜇. 基于光伏发电的铁路与新能源融合潜力评估[J]. 中国铁路, 2023(11): 64-71ZHANG S, ZHANG Z. Evaluation of the potential application of new energy in the railway sector based on PV power generation[J]. China Railway, 2023(11): 64-71. (in Chinese)
|
[22] |
KALEYBAR H J, BRENNA M, CASTELLI-DEZZA F, et al. Smart hybrid electric railway grids: a comparative study of architectures[Z]. 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). 2023: 1-6.10.1109/esars-itec57127.2023.10114844
|
[23] |
张文丽. 日本"举国"利用再生电力节能降耗推广铁路节能技术[J]. 能源研究与利用, 2015(2): 24-25.ZHANG W L. Japan"whole country"promotes railway energy saving technology by using regenerated power to save energy and reduce consumption[J]. Energy Research and Utilization, 2015(2): 24-25.6(in Chinese)
|
[24] |
田睿. 国外铁路清洁能源列车的应用[J]. 国外铁道机车与动车, 2023(4): 1-9, 13.TIAN R. Application of railway clean energy trains abroad[J]. Foreign Railway Locomotive and Motor Car, 2023(4): 1-9, 13. (in Chinese)
|
[25] |
李全生, 卓卉. 基于协同供能的轨道交通能源转型发展路径研究[J]. 北京交通大学学报(社会科学版), 2022, 21(3): 53-60LI Q S, ZHUO H. Research on the development path of rail transit energy based on synergistic energy[J]. Journal of Beijing Jiaotong University(Social Sciences Edition), 2022, 21 (3): 53-60. (in Chinese)
|
[26] |
王永泽. 铁路低碳技术革新实施路径研究[J]. 铁路节能环保与安全卫生, 2022, 12(5): 36-4044WANG Y Z. Research on the implementation path of railway low carbon technology innovation[J]. Railway Energy Saving & Environmental Protection & Occupational Safety and Health, 2022, 12(5): 36-4044(in Chinese)
|
[27] |
田立霞. 高铁新能源微电网规划定容及调度优化研究[D]. 北京: 华北电力大学(北京), 2022.TIAN L X. Planning and capacity and dispatching optimization of hsr's new energy microgrid[D]. Beijing: North China Electric Power University, 2022. (in Chinese)
|
[28] |
贾利民, 程鹏, 张蜇, 等". 双碳"目标下轨道交通与能源融合发展路径和策略研究[J]. 中国工程科学, 2022, 24(3): 173-183.JIA L M, CHENG P, ZHANG Z, et al. Integrated development of rail transit and energies in China: development paths and strategies[J]. Strategic Study of CAE, 2022, 24(3): 173-183. (in Chinese)
|
[29] |
胡海涛, 葛银波, 黄毅, 等. 电气化铁路"源-网-车-储"一体化供电技术[J]. 中国电机工程学报, 2022, 42(12): 4374-4390HU H T, GE Y B, HUANG Y, et al. "Source-network-train-storage"integrated power supply system for electric railways[J]. Proceedings of the CSEE, 2022, 42(12): 4374-4390(in Chinese)
|
[30] |
舟丹. 我国氢能产业化发展现状[J]. 中外能源, 2022, 27 (11): 62.ZHOU D. A new method for calculating oil displacement efficiency of water drive reservoirsat high water cut stage[J]. Sino-Global Energy, 2022, 27(11): 62. (in Chinese)
|
[31] |
冯聪, 罗聪, 明平文, 等. 氢燃料电池列车研究进展[J]. 内燃机与配件, 2022(19): 103-105.FENG C, LUO C, MING P W, et al. Research progress of hydrogen fuel cell train[J]. Internal Combustion Engines and Accessories, 2022(19): 103-105. (in Chinese)
|
[32] |
尹章文. 多模块燃料电池混合动力系统功率分配研究[D]. 武汉: 武汉理工大学, 2017.YIN Z W. Research on power allocation for multi module fuel cell hybrid power system[D]. Wuhan: Wuhan University of Technology, 2017. (in Chinese)
|
[33] |
彭生江, 杨德州, 孙传帅, 等. 基于氢负荷需求的氢能系统容量规划[J]. 中国电力, 2023, 56(7): 13-20, 32PENG S J, YANG D Z, SUN C S, et al. Capacity planning of hydrogen production and storage system based on hydrogen load demand[J]. Electric Power, 2023, 56(7): 13-20, 32. (in Chinese)
|
[34] |
王世林. 基于复杂网络理论的无线传感器网络重要节点挖掘[D]. 兰州: 兰州交通大学, 2023.WANG S L. Important node mining in wireless sensor networks based on complex network theory[D]. Lanzhou: Lanzhou Jiaotong University, 2023. (in Chinese)
|