留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多态清洁能源的铁路自洽能源系统架构

张蜇 孙雅妮 木合塔拜尔·拜合提亚尔

张蜇, 孙雅妮, 木合塔拜尔·拜合提亚尔. 基于多态清洁能源的铁路自洽能源系统架构[J]. 交通信息与安全, 2024, 42(5): 163-172. doi: 10.3963/j.jssn.1674-4861.2024.05.015
引用本文: 张蜇, 孙雅妮, 木合塔拜尔·拜合提亚尔. 基于多态清洁能源的铁路自洽能源系统架构[J]. 交通信息与安全, 2024, 42(5): 163-172. doi: 10.3963/j.jssn.1674-4861.2024.05.015
ZHANG Zhe, SUN Yani, BAIHETIYAER Muhetabaier. Architecture of Railway Self-Coordinated Energy System Based on Polymorphic Clean Energy[J]. Journal of Transport Information and Safety, 2024, 42(5): 163-172. doi: 10.3963/j.jssn.1674-4861.2024.05.015
Citation: ZHANG Zhe, SUN Yani, BAIHETIYAER Muhetabaier. Architecture of Railway Self-Coordinated Energy System Based on Polymorphic Clean Energy[J]. Journal of Transport Information and Safety, 2024, 42(5): 163-172. doi: 10.3963/j.jssn.1674-4861.2024.05.015

基于多态清洁能源的铁路自洽能源系统架构

doi: 10.3963/j.jssn.1674-4861.2024.05.015
基金项目: 

国家重点研发计划项目 2021YFB2601300

详细信息
    通讯作者:

    张蜇(1988—),博士,副教授.研究方向:轨道交通能源融合. E-mail: zhangzhe@bjtu.edu.cn

  • 中图分类号: U2

Architecture of Railway Self-Coordinated Energy System Based on Polymorphic Clean Energy

  • 摘要: 随着国家加速推进交通运输系统的能源结构转型,清洁能源在交通领域的应用日益受到关注。铁路自洽能源系统,作为铁路行业能源转型的重要组成部分,通过实现能源自给自足和能效提升,对降低铁路整体能耗、助力碳达峰与碳中和目标具有重要意义。本文系统从安全、高效、绿色、经济四个维度出发梳理了铁路自洽能源系统的关键需求。基于“源-网-荷”框架,通过分析铁路与清洁能源的融合机制,探讨电气化铁路和非电气化铁路2种不同类型铁路在实现清洁能源转型过程中所面临的机遇,并对铁路与清洁能源融合的特征和能量流动过程进行了深入研究,详细解析了铁路与清洁能源融合的模式和适用条件,为构建铁路自洽能源系统奠定理论基础。在此基础上本文进一步归纳了典型的电气化铁路和非电气化铁路的应用场景,并基于其特点设计了适用于铁路自洽能源系统的物理架构。此外,本文提出了铁路自洽能源系统的评价指标体系,主要从架构合理、模式多样、环境友好和效益显著角度出发,以系统性地评估该系统在实际应用中的表现。这一指标体系不仅有助于全面评估铁路自洽能源系统的效能,也为铁路领域低碳发展的技术路线和政策实施提供科学依据。本文的研究为未来铁路系统的低碳转型和清洁能源的深度融合提供了新的视角和发展路径。

     

  • 图  1  铁路清洁能源系统数据融合与协同管理示意图

    Figure  1.  Schematic diagram of data fusion and collaborative management of railway clean energy system

    图  2  铁路与清洁能源融合特征

    Figure  2.  Characteristics of Railway and Clean Energy Integration

    图  3  铁路与清洁能源融合能量流动过程

    Figure  3.  Railway and clean energy integration Energy flow process

    图  4  交/直流混合微电网并入分相交流轨道牵引网

    Figure  4.  AC/DC hybrid microgrid integrated into dephased AC railway traction network

    图  5  交流微电网并入分相交流轨道牵引网

    Figure  5.  AC microgrid integrated into the dephased AC railway traction network

    图  6  电气化铁路自洽能源系统下能量管控逻辑

    Figure  6.  Energy control logic in self-consistent energy system of electrified railway

    图  7  铁路清洁能源系统数据融合与协同管理示意图

    Figure  7.  History of the development of integration of railway and hydrogen energy

    图  8  非电气化铁路自洽能源系统电能列车物理架构

    Figure  8.  Physical architecture of electric train for non-electrified railway self-consistent energy system

    图  9  非电气化铁路自洽能源系统电能列车充电/换电示意图

    Figure  9.  Schematic diagram of charging/changing electric energy trains in self-consistent energy system of non-electrified railway

    图  10  非电气化铁路自洽能源系统氢能列车物理架构

    Figure  10.  Physical architecture of hydrogen train for non-electrified railway self-consistent energy system

    图  11  非电气化铁路自洽能源系统氢能列车加氢示意图

    Figure  11.  Non-electrified railway self-consistent energy system hydrogen train hydrogenation schematic

    图  12  铁路自洽能源系统评价指标体系

    Figure  12.  Evaluation index system of railway self-consistent energy system

  • [1] RIFKIN J. The third industrial revolution: how lateral power is transforming energy, the economy, and the world[M]. New York: Palgrave MacMillan, 2011.
    [2] 董朝阳, 赵俊华, 文福拴, 等. 从智能电网到能源互联网: 基本概念与研究框架[J]. 电力系统自动化, 2014, 38(15): 1-11.

    DONG Z Y, ZHAO J H, WEN F S, et al. From smart grid to energy internet: basic concept and research framework[J]. Automation of Electric Power Systems, 2014, 38(15): 1-11. (in Chinese)
    [3] 孙宏斌, 郭庆来, 潘昭光. 能源互联网: 理念、架构与前沿展望[J]. 电力系统自动化, 2015, 39(19): 1-8

    SUN H B, GUO Q L, PAN Z G. Energy internet: concept, architecture and frontier outlook[J]. Automation of Electric Power Systems, 2015, 39(19): 1-8(in Chinese)
    [4] 胡海涛, 郑政, 何正友, 等. 交通能源互联网体系架构及关键技术[J]. 中国电机工程学报, 2018, 38(1): 12-24

    HU H T, ZHENG Z, HE Z Y, et al. The framework and key technologies of traffic energy internet[J]. Proceedings of the CSEE, 2018, 38(1): 12-24(in Chinese)
    [5] 韦晓广, 高仕斌, 臧天磊, 等. 社会能源互联网: 概念、架构和展望[J]. 中国电机工程学报, 2018, 38(17): 4969-4986.

    WEI X G, GAO S B, ZANG T L, et al. Social energy internet: concept, architecture and outlook[J]. Proceedings of the CSEE, 2018, 38(17): 4969-4986. (in Chinese)
    [6] TIAN Z. System energy optimisation strategies for dc railway traction power networks[D]. Birmingham: University of Birmingham, 2017.
    [7] WU C. Intelligent train operation with on-board energy storage device: an energy-saving perspective[D]. Liverpool: The University of Liverpool, 2021.
    [8] ALNUMAN H. Control techniques for energy management using energy storage in DC electric railways[D]. Sheffield: University of Sheffield(United Kingdom), 2021.
    [9] 胡田飞, 刘济华, 李天峰, 等. 铁路与新能源融合发展现状及展望[J]. 中国工程科学, 2023, 25(2): 122-132.

    HU T F, LIU J H, LI T F, et al. Current status and prospect of the integration of railway and new energy[J]. Strategic Study of CAE, 2023, 25(2): 122-132. (in Chinese)
    [10] FEDELE E, IANNUZZI D, DEL PIZZO A. Onboard energy storage in rail transport: review of real applications and techno-economic assessments[J]. IET Electrical Systems in Transportation, 2021, 11(4): 279-309. doi: 10.1049/els2.12026
    [11] GAO M Y, SU C G, CONG J L, et al. Harvesting thermoelectric energy from railway track[J]. Energy, 2019, 180: 315-29. http://www.xueshufan.com/publication/2946239175
    [12] WU C X, LU S F, XUE F, et al. Earth potential as the energy storage in rail transit system - on a vertical alignment optimization problem[C]. 21st IEEE International Conference on Intelligent Transportation Systems(ITSC), Maui, HI: IEEE, 2018.
    [13] 林立, 孟学雷, 程晓卿, 等. 考虑碳排放效果的城轨列车开行方案编制方法[J]. 交通信息与安全, 2023, 41(5): 176-184. doi: 10.3963/j.jssn.1674-4861.2023.05.018

    LIN L, MENG X L, CHENG X Q, et al. A method for developing service plan of urban rail train considering carbon emissions impacts[J]. Journal of Transport Information and Safety, 2023, 41(5): 176-184. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.018
    [14] LU J, ZHU C, LI X. Research on the recovery and reuse method of train regenerative braking energy based on the decommissioned equipment of EMU trains[J]. Journal of Electrical Engineering & Technology, 2023, 18(5): 3941-3949. doi: 10.1007/s42835-023-01433-y
    [15] CHEN J Y, GE Y B, WANG K, et al. Integrated regenerative braking energy utilization system for multi-substations in electrified railways[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 298-310.
    [16] KHODAPARASTAN M. Recuperation of regenerative braking energy in electric rail transit systems[D]. New York: The City College of New York, 2020.
    [17] LI X, ZHU C, LIU Y. Traction power supply system of China high-speed railway under low-carbon target: form evolution and operation control[J]. Electric Power Systems Research, 2023, 223. doi: 10.1016/j.epsr.2023.109682
    [18] 陈冲, 贾利民, 赵天宇, 等. 去碳化导向的轨道交通与新能源融合发展—形态模式、解决方案和使/赋能技术[J]. 电工技术学报, 2023, 38(12): 3321-3337

    CHEN C, JIA L M, ZHAO T Y, et al. Decarbonization-oriented rail transportation and renewable energy integration development—configurations, solutions, and enabling/empowering technologies[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3321-3337. (in Chinese)
    [19] GEORGE N, CHOWDHURY S P D. Roof-top solar power augmentation to auxiliary supply of passenger train[C]. 2018 IEEE PES/IAS PowerAfrica, Cape Town, South Africa, 2018.
    [20] 沙宽. 新能源与铁路融合发展模式及其潜力研究[D]. 北京: 北京交通大学, 2022.

    SHA K. Investigation on development patterns and its potential of renewable energy-integrated rail sector[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
    [21] 张舜, 张蜇. 基于光伏发电的铁路与新能源融合潜力评估[J]. 中国铁路, 2023(11): 64-71

    ZHANG S, ZHANG Z. Evaluation of the potential application of new energy in the railway sector based on PV power generation[J]. China Railway, 2023(11): 64-71. (in Chinese)
    [22] KALEYBAR H J, BRENNA M, CASTELLI-DEZZA F, et al. Smart hybrid electric railway grids: a comparative study of architectures[Z]. 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). 2023: 1-6.10.1109/esars-itec57127.2023.10114844
    [23] 张文丽. 日本"举国"利用再生电力节能降耗推广铁路节能技术[J]. 能源研究与利用, 2015(2): 24-25.

    ZHANG W L. Japan"whole country"promotes railway energy saving technology by using regenerated power to save energy and reduce consumption[J]. Energy Research and Utilization, 2015(2): 24-25.6(in Chinese)
    [24] 田睿. 国外铁路清洁能源列车的应用[J]. 国外铁道机车与动车, 2023(4): 1-9, 13.

    TIAN R. Application of railway clean energy trains abroad[J]. Foreign Railway Locomotive and Motor Car, 2023(4): 1-9, 13. (in Chinese)
    [25] 李全生, 卓卉. 基于协同供能的轨道交通能源转型发展路径研究[J]. 北京交通大学学报(社会科学版), 2022, 21(3): 53-60

    LI Q S, ZHUO H. Research on the development path of rail transit energy based on synergistic energy[J]. Journal of Beijing Jiaotong University(Social Sciences Edition), 2022, 21 (3): 53-60. (in Chinese)
    [26] 王永泽. 铁路低碳技术革新实施路径研究[J]. 铁路节能环保与安全卫生, 2022, 12(5): 36-4044

    WANG Y Z. Research on the implementation path of railway low carbon technology innovation[J]. Railway Energy Saving & Environmental Protection & Occupational Safety and Health, 2022, 12(5): 36-4044(in Chinese)
    [27] 田立霞. 高铁新能源微电网规划定容及调度优化研究[D]. 北京: 华北电力大学(北京), 2022.

    TIAN L X. Planning and capacity and dispatching optimization of hsr's new energy microgrid[D]. Beijing: North China Electric Power University, 2022. (in Chinese)
    [28] 贾利民, 程鹏, 张蜇, 等". 双碳"目标下轨道交通与能源融合发展路径和策略研究[J]. 中国工程科学, 2022, 24(3): 173-183.

    JIA L M, CHENG P, ZHANG Z, et al. Integrated development of rail transit and energies in China: development paths and strategies[J]. Strategic Study of CAE, 2022, 24(3): 173-183. (in Chinese)
    [29] 胡海涛, 葛银波, 黄毅, 等. 电气化铁路"源-网-车-储"一体化供电技术[J]. 中国电机工程学报, 2022, 42(12): 4374-4390

    HU H T, GE Y B, HUANG Y, et al. "Source-network-train-storage"integrated power supply system for electric railways[J]. Proceedings of the CSEE, 2022, 42(12): 4374-4390(in Chinese)
    [30] 舟丹. 我国氢能产业化发展现状[J]. 中外能源, 2022, 27 (11): 62.

    ZHOU D. A new method for calculating oil displacement efficiency of water drive reservoirsat high water cut stage[J]. Sino-Global Energy, 2022, 27(11): 62. (in Chinese)
    [31] 冯聪, 罗聪, 明平文, 等. 氢燃料电池列车研究进展[J]. 内燃机与配件, 2022(19): 103-105.

    FENG C, LUO C, MING P W, et al. Research progress of hydrogen fuel cell train[J]. Internal Combustion Engines and Accessories, 2022(19): 103-105. (in Chinese)
    [32] 尹章文. 多模块燃料电池混合动力系统功率分配研究[D]. 武汉: 武汉理工大学, 2017.

    YIN Z W. Research on power allocation for multi module fuel cell hybrid power system[D]. Wuhan: Wuhan University of Technology, 2017. (in Chinese)
    [33] 彭生江, 杨德州, 孙传帅, 等. 基于氢负荷需求的氢能系统容量规划[J]. 中国电力, 2023, 56(7): 13-20, 32

    PENG S J, YANG D Z, SUN C S, et al. Capacity planning of hydrogen production and storage system based on hydrogen load demand[J]. Electric Power, 2023, 56(7): 13-20, 32. (in Chinese)
    [34] 王世林. 基于复杂网络理论的无线传感器网络重要节点挖掘[D]. 兰州: 兰州交通大学, 2023.

    WANG S L. Important node mining in wireless sensor networks based on complex network theory[D]. Lanzhou: Lanzhou Jiaotong University, 2023. (in Chinese)
  • 加载中
图(12)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  19
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-28
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回