A Comprehensive Evaluation Method for the Planning of Self-Sufficient Energy System for Ports Based on Improved Composite Weighting
-
摘要: 针对港口绿色化评价体系构建的问题,结合港口交通与能源融合发展理念,研究了一套规划方案综合评价方法。方法综合考虑了清洁能源可获得性自然禀赋、能源负荷特征及自洽能源系统规划容量等多种因素,构建了包含经济性、环境性、能效性、自洽性和可靠性5个维度的自洽能源系统规划方案评价指标体系,并基于这些指标建立了相应的量化评价模型。为解决数据匮乏问题,采用层次分析法(analytic hierarchy process,AHP)和熵权法(entropy weight method,EWM)分别计算各指标权重,并采用博弈集结模型确定评价指标的组合权重。最后,采用TOPSIS综合评价方法对不同规划方案进行综合评价,通过以某港口智能化集装箱港区A的示范项目作为案例进行验证。采用传统熵权法(EWM)、秩和比法(rank sum ratio,RSR)和基于熵权的多准则妥协解排序法(EWM-VIKOR)对上述算例进行方案排序,并与本文所提出的综合评价方法(AHP-EWM-TOPSIS)进行对比验证;通过改变方案原始排名第1的方案2中某个指标的数值作为测试数据集进行评估,确定各评价指标在一定范围内变动时是否引起方案排名结果变动,同时找出影响方案排名结果的最敏感的指标比较不同评价方法的鲁棒性。结果表明:不同方法得到的方案排序结果一致,验证了该模型的有效性;AHP-EWM-TOPSIS方法在评价结果的稳定性优于EWM-VIKOR。
-
关键词:
- 港口自洽能源系统 /
- 指标体系 /
- AHP-EWM组合赋权法 /
- 综合评价 /
- TOPSIS
Abstract: This study develops a comprehensive evaluation method for green port planning schemes, integrating the concepts of sustainable port transportation and energy management, to address the issue of constructing a green port evaluation system.The method considers critical factors including the availability of clean energy resources, energy load characteristics, and the capacity for planning a self-sufficient energy system.An evaluation index system for self-sufficient energy system planning is established across five dimensions: economic feasibility, environmental impact, energy efficiency, self-sufficiency, and reliability.Based on these indicators, a quantitative evaluation model is developed.To address data limitations, the analytic hierarchy process (AHP) and entropy weight method (EWM) are used to calculate weights individually, while an aggregated game theory-based model is used to determine the combined weights of the evaluation indices.The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is then employed for the comprehensive assessment of different planning schemes.A demonstration project from an intelligent container port (Port Area A) serves as a case study to verify and validate the model.The proposed AHP-EWM-TOPSIS method is compared with traditional methods, including the entropy weight method (EWM), rank sum ratio method (RSR), and the Entropy-weighted VIKOR method (EWM-VIKOR), to assess the stability and sensitivity of scheme rankings.By altering a specific index in the top-ranking scheme (Scheme 2) as test data, the model's robustness is evaluated in terms of ranking consistency and sensitivity to index variations.Results indicate that scheme rankings are consistent across methods, verifying the model's effectiveness, with AHP-EWM-TOPSIS demonstrating superior stability over EWM-VIKOR. -
表 1 港口自洽能源系统规划方案层次性评价指标体系
Table 1. hierarchical evaluation index system for the selfSufficient energy system planning in port
目标 一级指标 一级指标符号 二级指标 二级指标符号 港口自洽能源系统规划方案综合评价 经济性 A 初始投资 A1 单位能量成本 A2 投资回报率 A3 环境性 B 单位吞吐量CO2排放量 B1 污染气体减排经济价值 B2 清洁能源有效发电总量 B3 能效性 C 综合能源利用效率 C1 设备等效满负荷小时 C2 弃电率 C3 自洽性 D 电负荷占比 D1 系统电能自洽率 D2 清洁能源发电自用率 D3 可靠性 E 最大供电能力 E1 最大供热能力 E2 表 2 测风塔统计多年平均风速年变化数据
Table 2. Annual change in multi-year average wind speed for anemometer tower statistics
单位: m/s 月份 风速 月份 风速 月份 风速 一月 5.633 五月 7.174 九月 5.363 二月 5.936 六月 6.161 十月 6.032 三月 6.817 七月 5.329 十一月 6.068 四月 7.434 八月 4.727 十二月 5.862 表 3 系统主要规划设备
Table 3. The main plan of the system is to set up equipment
设备类型 单机容量/kW 投资成本/(万元/台) 运行成本/(元/kW) 效率 寿命/年 风机 4 500 5100 0.019 20 光伏电池板 0.2 0.12 0.020 20 热电联产 500 220 0.025 0.45/0.25 25 电锅炉 200 35 0.016 0.92 15 蓄电池 1 000 210 0.001 8 0.92 5 蓄热罐 300 45 0.001 6 0.94 10 表 4 峰谷时段分时电价
Table 4. Peak valley time-of-use electricity price
峰谷时段划分 购电/(元/kW·h) 售电/(元/kW·h) 低谷时段 00∶00—07∶00 0.31 0.186 平时时段 08∶00—10∶00; 0.61 0.366 16∶00—17∶00; 23∶00—24∶00 高峰时段 11∶00—13∶00; 0.98 0.588 18∶00—22∶00 *数据来源于港区当地国网电力公司。 表 5 备选方案设备配置情况
Table 5. Equipment configuration for alternative solutions
单位: MW 设备类型 方案 方案2 方案3 方案4 方案5 风机 22.5 31.5 36 40.5 45 光伏电池板 0 1.2 4 3 4.8 热电联产 3.5 2 2.5 1.5 1 电锅炉 1.2 1.6 1.4 1.2 1.6 蓄电池 0 0.9 2 4 7 蓄热罐 0 0 0 0.9 1.2 表 6 指标量化结果
Table 6. Quantitative results of indicators
指标 指标编号 方案1 方案2 方案3 方案4 方案5 初始投资/万元 A1 25 750 35 615 42 565 46 845 53 250 单位能量成本/(元/kW·h) A2 0.561 0.568 0.591 0.606 0.649 投资回报率/% A3 15.60 14.47 11.00 8.84 2.32 单位吞吐量CO2排放量(/ kg/TEU) B1 11.328 8.129 7.378 5.855 4.627 污染气体减排经济价值/万元 B2 3 278 3 758 3 972 4 108 4 282 清洁能源有效发电总量(/ 万kW·h) B3 135
538191
470222
229244
907267
678综合能源利用效率/% C1 96.80 97.51 97.53 97.78 98.52 设备年均等效满负荷小时/h C2 2 508 2 832 2 111 2 861 2 634 弃电率/% C3 0.00 0.00 0.16 1.35 3.69 电负荷占比/% D1 97.46 98.38 98.22 98.65 99.43 系统电能自洽率/% D2 88.10 72.13 65.34 60.83 57.04 清洁能源发电自用率/% D3 67.48 78.05 82.19 85.34 89.60 最大供电能力 E1 1.28 1.41 1.48 1.54 1.60 最大供热能力 E2 1.78 2.22 1.80 1.75 2.15 表 7 指标最优组合权重
Table 7. Optimal combination of indicator weights
指标编号 主观权重 客观权重 组合权重 A1 0.081 0.081 0.081 A2 0.033 0.059 0.047 A3 0.196 0.061 0.125 B1 0.211 0.060 0.131 B2 0.056 0.059 0.058 B3 0.024 0.061 0.043 C1 0.018 0.067 0.044 C2 0.007 0.058 0.034 C3 0.034 0.054 0.045 D1 0.011 0.067 0.041 D2 0.055 0.107 0.082 D3 0.120 0.059 0.088 E1 0.124 0.062 0.091 E2 0.030 0.145 0.090 表 8 方案综合评价得分
Table 8. Comprehensive evaluation score of the plan
方案 正理想解距离(D +) 负理想解距离(D -) 综合得分 方案1 0.763 0.624 45 方案2 0.427 0.683 61.5 方案3 0.535 0.56 51.2 方案4 0.529 0.634 54.5 方案5 0.62 0.76 55.1 表 9 不同方法方案排序结果
Table 9. Sorting the results of various methods and approaches
方案 EWM RSR EWM-VIKOR AHP-EWM-TOPSIS 方案1 5 5 5 5 方案2 1 1 1 1 方案3 4 4 4 4 方案4 3 3 3 3 方案5 2 2 2 2 表 10 不同方法下各指标变化后方案1评价结果
Table 10. Evaluation results of solution 1 after the changes in different indicators under different methods
指标编号 EWM RSR EWM-VIKOR AHP-EWM-TOPSIS 评分值 排名 评分值 排名 评分值 排名 评分值 排名 A1 0.641 1 0.732 1 0.641 1 0.596 1 A2 0.602 2 0.63 3 0.602 1 0.574 1 A3 0.65 1 0.734 1 0.65 1 0.597 1 B1 0.642 1 0.733 1 0.643 1 0.582 1 B2 0.624 1 0.721 1 0.624 1 0.582 1 B3 0.633 1 0.731 1 0.633 1 0.596 1 C1 0.646 1 0.72 1 0.646 1 0.601 1 C2 0.611 1 0.555 2 0.611 1 0.59 1 C3 0.642 1 0.717 1 0.642 1 0.561 1 D1 D2 0.574 1 0.724 1 0.575 1 0.561 1 D3 0.622 1 0.722 1 0.623 1 0.568 1 E1 0.635 1 0.723 1 0.635 1 0.576 1 E2 0.504 2 0.626 3 0.504 2 0.535 2 表 11 EWM-VIKOR与AHP-EWM-TOPSIS在D2指标变化时评价结果对比表
Table 11. Comparison of evaluation results of EWM-VIKOR and AHP-EWM-TOPSIS on D2 indicator changes table
方案 EWM-VIKOR AHP-EWM-TOPSIS 评分值 排名 评分值 排名 方案1 44.1 4 46.1 5 方案2 57.5 1 56.1 1 方案3 44.2 2 50.8 4 方案4 48.3 5 53.6 3 方案5 56.0 3 54.0 2 -
[1] 蒋一鹏, 袁成清, 袁裕鹏, 等. "双碳"战略下中国港口与清洁能源融合发展路径探析[J]. 交通信息与安全, 2023, 41 (2): 139-146. doi: 10.3963/j.jssn.1674-4861.2023.02.015JIANG Y P, YUAN C Q, YUAN Y P, et al. Pathway for integrated development of port and clean energy under strategy of carbon peaking and carbon neutralization in China[J]. Journal of Transport Information and Safety, 2023, 41(2): 139-146. (in Chinese). doi: 10.3963/j.jssn.1674-4861.2023.02.015 [2] 中共中央、国务院. 交通强国建设纲要[Z]. 北京: 人民交通出版社出版, 2019.The Central Committee of the Communist Party of China, the State Council, People's Republic of China. Outline of building China's strength in transportation[Z]. Beijing: China Communications Press, 2019(in Chinese). [3] 中共中央、国务院. 国家综合立体交通网规划纲要[Z]. 上海: 人民出版社, 2021.The Central Committee of the Communist Party of China, the State Council, People's Republic of China. Outline of national comprehensive three-dimensional transportation network plan[Z]. Shanghai: People's Publishing House, 2022(in Chinese). [4] 国家发展改革委". 十四五"现代能源体系规划[Z]. 北京: 国家发展改革委, 2022.National Development and Reform Commission. "14th Five-Year Plan" modern energy system planning[Z]. Beijing: National Development and Reform Commission, 2022(in Chinese). [5] 贾利民, 师瑞峰, 吉莉, 等. 我国道路交通与能源融合发展战略研究[J]. 中国工程科学, 2022, 24(3): 163-172.JIA L M, SHI R F, JI L, et al. Road transportation and energy integration strategy in China[J]. Strategic Study of CAE, 2022, 24(3): 163-172. (in Chinese) [6] 侯珏. 水运行业节能减排现状及发展趋势分析[J]. 交通节能与环保, 2017, 13(1): 9-13, 22.HOU Y. Analysis on the present situation and development trend of energy saving and emission reduction in water transport industry[J]. Energy Conservation & Environmental Protection in Transportation, 2017, 13(1): 9-13, 22. (in Chinese) [7] SANJEEV P, PADHY N P, AGARWAL P. Peak energy management using renewable integrated dc microgrid[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4906-4917. doi: 10.1109/TSG.2017.2675917 [8] POURBEHZADI M, NIKNAM T, AGHAEJ J, et al. Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: a comprehensive review[J]. International Journal of Electrical Power & Energy Systems, 2019, 109: 139-159. [9] 郑玉平, 王丹, 万灿, 等. 面向新型城镇的能源互联网关键技术及应用[J]. 电力系统自动化, 2019, 43(14): 2-15.ZHENG Y P, WANG D, WAN C, et al. Key technology and application of energy internet oriented to new-type towns[J]. Automation of Electric Power, 2019, 43(14): 2-15. (in Chinese) [10] 白树伟, 甘中学. 分布式能源系统综合评价方法及评价指标体系[J]. 煤气与热力, 2016, 36(1): 39-44.BAI S W, GAN Z X. Comprehensive evaluation method and evaluation index system of natural gas distributed energy system[J]. Gas & Heat, 2016, 36(1): 39-44. (in Chinese) [11] 陈柏森, 廖清芬, 刘涤尘, 等. 区域综合能源系统的综合评估指标与方法[J]. 电力系统自动化, 2018, 42(4): 174-182.CHEN B S, LIAO Q F, LIU D C, et al. Comprehensive evaluation indicators and methods of regional integrated energy systems[J]. Automation of Electric Power Systems, 2018, 42(4): 174-182. (in Chinese) [12] HU W, LU X, LIANG S, et al. Evaluation index system of source-network-load-storage coordination for integrated energy system[C]. 11th International Conference on Measuring Technology and Mechatronics Automation, New York: IEEE, 2019. [13] 孟明, 罗洋. 基于AHP-熵权法的综合能源系统多指标评价[J]. 电力科学与工程, 2021, 37(5): 46-54.MENG M, LUO Y. Multi-index evaluation of integrated energy system based on ahp entropy weight method[J]. Electric Power Science and Engineering, 2021, 37(5): 46-54. (in Chinese) [14] MONICA C, LUIS M S, MIGUEL AL. Optimal synthesis of trigeneration systems subject to environmental constraints[J]. Energy, 2011, 36(6): 3779-3790. [15] 沈萌, 张干, 张可爱. 园区级区域综合能源系统综合评价方法及应用[J]. 北京理工大学学报(社会科学版), 2022, 24(4): 52-65.SHEN M, ZHANG G, ZHANG K A. Comprehensive evaluation method and application study of campus-level regional integrated energy system[J]. Journal of Beijing Institute of Technology(Social Sciences Edition), 2022, 24(4): 52-65. (in Chinese) [16] TAMOOR M, TAHIR M A, ZAKA M A, et al. Photovoltaic distributed generation integrated electrical distribution system for development of sustainable energy using reliability assessment indices and levelized cost of electricity[J]. Environmental Progress & Sustainable Energy, 2022, 41(4): e13815. [17] CELO M B, BUALOTI R. Integrated indices that reflects reliability assessment for generation and transmission network[C]. 13th IEEE Mediterranean Electrotechnical Conference, New York: IEEE, 2020. [18] ANDRADE W S, BORGES C L T, FALCAO D M. integrated reliability evaluation of distribution and sub-transmission systems incorporating distributed generation[C]. IEEE/PES Power Systems Conference and Exposition, New York: IEEE, 2009. [19] GUO C M, BIAN C H, LIU Q H, et al. A new method of evaluating energy efficiency of public buildings in China[J]. Journal of Building Engineering. 2021, 46. [20] WANG J J, JING Y Y, ZHANG C F, et al. A fuzzy multi-criteria decision-making model for trigeneration system[J]. Energy Policy, 2008, 36(10): 3823-3832. [21] HE P, GUO Y M, WANG X D, et al. A multi-level fuzzy evaluation method for the reliability of integrated energy systems[J]. Applied Sciences, 2023, 13(1): 274. [22] ZAVADSKAS E K, PODVEZKO V. Integrated determination of objective criteria weights in MCDM[J]. International Journal of Information Technology & Decision Making, 2016, 15(2): 267-283. [23] YANG W Y, LIU L, YU X B. Evaluating the comprehensive benefit of group-affiliated new energy power generation enterprises for sustainability: based on a combined technique of STBI and TOPSIS[J]. Sustainability. 2018, 10(1). [24] 李金良, 刘怀东, 王睿卓, 等. 基于交叉超效率CCR模型的综合能源系统综合效率评价[J]. 电力系统自动化, 2020, 44(11): 78-86.LI J L, LIU H D, WANG R Z, et al. Comprehensive efficiency evaluation of integrated energy system based on cross-super-efficiency CCR model[J]. Automation of Electric power systems, 2020, 44(11): 78-86. (in Chinese) [25] 韩中合, 祁超, 向鹏, 等. 分布式能源系统效益分析及综合评价[J]. 热力发电, 2018, 47(2): 31-36.HAN Z H, QI C, XIANG P, et al. Benefit analysis and comprehensive evaluation for distributed energy system[J]. Thermal Power Generation, 2018, 47(2): 31-36. (in Chinese) [26] 张冬雪. 考虑不确定性的综合能源系统规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.ZHANG D X. Integrated energy system planning considering uncertainty[D]. Harbin: Harbin Institute of Technology, 2021. [27] YANG Y Q, XUE W L, KANG S Y, et al. Comprehensive benefit analysis for integrated energy systems projects based on ahp-fuzzy[C]. 2nd IEEE Conference on Energy Internet and Energy System Integration(EI2), New York: IEEE, 2018. [28] 魏学好, 周浩. 中国火力发电行业减排污染物的环境价值标准估算[J]. 环境科学研究, 2003, 16(1): 53-56.WEI X H, ZHOU H. Evaluating the environmental value schedule of pollutants mitigated in china thermal power industry[J]. Research of Environmental Sciences, 2003, 16 (1): 53-56. (in Chinese) [29] BALLI O, HEPBASLI A. Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine[J]. Energy, 2015, 64: 582-600. [30] BEINAT E, NIJKAMP P, RIETVELD P. Value functions for environmental pollutants: a technique for enhancing the assessment of expert judgements[J]. Environmental Monitoring and assessment, 1994, 30(1): 9-23. [31] SHRESTHA T K, KARK R. Utilizing energy storage for operational adequacy of wind-integrated bulk power systems[J]. Applied Sciences Basel, 2020, 10(17). [32] 闻旻. 综合能源系统规划方案的综合评价方法研究[D]. 上海: 上海交通大学, 2018.WEN M. Research on comprehensive evaluation of integrated energy system planning[D]. Shanghai : Shanghai Jiao Tong University, 2018. (in Chinese) [33] 李正茂, 张峰, 梁军, 等. 含电热联合系统的微电网运行优化[J]. 中国电机工程学报, 2015, 35(14): 3569-3576.LI Z M, ZHANG F, LIANG J, et al. Optimization on microgrid with combined heat and power system[J]. Proceedings of the CSEE, 2015, 35(14): 3569-3576. (in Chinese) -