A Bi-Layer Optimal Dispatch Method of Energy in Freeway Micro-grid Systems
-
摘要: 随着国家“双碳战略”的推进,新能源在交通领域的应用与能源转型得到快速的发展。在我国西部无电网或弱电网地区,风光资源充足,可采用微电网为路域用能设施供能。但高速公路微电网存在纵向跨度大、离散分布、出力不均衡、沿线配电网建设运行成本高等问题,因此,将移动储能调度设备引入到高速公路微电网能源调度系统结构中。在此基础上,构建高速公路微电网及移动储能系统模型,提出新的调度成本机制及能量调度双层架构。同时,高速公路微电网系统具有长距离带状结构,会造成微电网子控制器调度产生通信负担。针对此问题提出交替方向乘子法分布式双层优化调度策略,该方法将全局问题拆解为局部问题进行并行优化求解,各微电网仅需与相邻微电网进行通信,相互之间交换期望能源需求信息。系统以高速公路微电网总运行成本最小作为耦合变量,通过增广拉格朗日罚函数进行松弛,将原优化问题解耦为各系统的独立子优化问题,并采用双层循环求解的方式,最终获得全局最优调度方案。本文通过数值仿真分析验证可再生能源利用率提升了15.3%,在实现高速公路用能的基础上保障了经济性。
-
关键词:
- 高速公路微电网能源调度 /
- 新能源交通 /
- 移动储能 /
- 交替方向乘子法 /
- 双层优化调度策略
Abstract: With the advancement of China's "dual carbon strategy", the usage of new energy in transportation and the transformation of energy have developed rapidly.In areas with no power grid or weak power grid in western China, where wind and solar resources are sufficient, micro-grids can be used to supply power to facilities in road areas. However, freeway micro-grids have problems such as large longitudinal span, discrete distribution, unbalanced output, and high construction and operation costs of distribution networks along the roads.Therefore, the mobile energy storage dispatching equipment is introduced into the freeway energy system.On this basis, a model of freeway micro-grid with mobile energy storage system is developed, and a newly two-layer structure for dispatching cost mechanism and energy dispatching is proposed.Meanwhile, the micro-grid system for freeway has a long-distance strip structure, which would cause communication burden for the micro-grid sub-controller dispatch.To solve this problem, a distributed bi-layer optimization dispatching strategy using the alternating direction multiplier method is proposed.This method decomposes the global problem into local problem, which is solved through parallel optimization, and each micro-grid only needs to communicate with adjacent micro-grids to exchange the information of expected energy demand.The system takes the minimum total operating cost of the freeway micro-grid as the coupling variable, which is relaxed through the augmented Lagrangian penalty function.As a result, the original optimization problem is decoupled into independent sub-optimization problems of each system.A bi-layer loop solution method is used to obtain the global optimal scheduling plan.A numerical simulation analysis is carried out and show that the utilization rate of renewable energy has increased by 15.3%, ensuring the economic benefits while achieving energy use in freeway. -
表 1 自洽微电网参数设定
Table 1. Self-consistent microgrid parameter settings
参数 数值 参数 数值 $P_{i, \min }^L / \mathrm{MW}$ 0.5 $\eta_i^{\mathrm{ch}}$ 0.89 $P_{i, \max }^L / \mathrm{MW}$ 5 $\eta_i^{d \mathrm{ch}}$ 0.85 $P_{i, \min }^{\mathrm{RES}} / \mathrm{MW}$ 0.25 $D o D_i$ 0.2 $P_{i, \max }^{\mathrm{RES}} / \mathrm{MW}$ 6 $\varepsilon^{\mathrm{pri}}$ e-3 $\Delta P_{i, \max }^L / \mathrm{MW}$ 4 $\varepsilon^{\text {dual }}$ e-5 $E_i(0) / \mathrm{MW}$ 2 $\ell_1$ 0.3 $E_i^{\max } / \mathrm{MW}$ 4 $\ell_2$ 0.3 $t / h$ 24 $\ell_3$ 0.4 表 2 MESS参数设定
Table 2. MESS parameter settings
参数 数值 参数 数值 $C^{\mathrm{MESS} / \mathrm{MWh}} / \text { 万元 }$ 6 $C^{\mathrm{ES}} / \text { 万元 }$ 0.5 $C^{\text {truck }} / \text { 万元 }$ 5 $C_i^M / \text { 万元 }$ 0.42 $C_i^{\mathrm{O} \mathrm{p}} / \text { 万元 }$ 0.6 $d_{12} / \mathrm{km}$ 90 $E_{\max }^{\mathrm{MESS}}(k) / \mathrm{MW} \cdot \mathrm{~h}$ 1 $d_{23} / \mathrm{km}$ 70 $P_{\text {rated }}^{\text {MESS }} / \mathrm{MW}$ 1 $d_{13} / \mathrm{km}$ 80 $V_{\text {avg }} / \mathrm{km} / \mathrm{h}$ 90 NMESS 2 -
[1] SONG M, ZHENG W, WANG Z. Environmental efficiency and energy consumption of highway transportation systems in China[J]. International Journal of Production Economics, 2016, 181: 441-449. doi: 10.1016/j.ijpe.2015.09.030 [2] GUO Q, LIANG H, LIAO H, et al. Statistical analysis and research on energy consumption in highway service area[C]. 7th International Conference on Intelligent Computing, Xi'an, China: IEEE, 2022. [3] JIN C, SHENG X, GHOSH P. Optimized electric vehicle charging with intermittent renewable energy sources[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(6): 1063-1072. doi: 10.1109/JSTSP.2014.2336624 [4] CALVILLO C F, SÁNCHEZ-MIRALLES Á, VILLAR J. Synergies of electric urban transport systems and distributed energy resources in smart cities[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2445-2453. doi: 10.1109/TITS.2017.2750401 [5] 贾小团. 风光互补发电系统在高速公路中的应用[J]. 运输经理世界, 2022(16): 149-151.JIA X T. Application of wind-solar complementary power generation system in highway[J]. Transportation Manager World, 2022, (16): 149-151. [6] XU H, CAO S, XU X. The development of highway infrastructure and CO2 emissions: the mediating role of agglomeration[J]. Journal of Cleaner Production, 2022, 337: 130501. doi: 10.1016/j.jclepro.2022.130501 [7] CRUZ J D L, WU Y, CANDELO-BECERRA J E, et al. Review of networked microgrid protection: architectures, challenges, solutions, and future trends[J]. CSEE Journal of Power and Energy Systems, 2024, 10(2): 448-467. http://d.wanfangdata.com.cn/periodical/zgdjgcxhdlynyxtxb202402002 [8] YANG J, SU C. Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty[J]. Energy, 2021, 223: 120043. doi: 10.1016/j.energy.2021.120043 [9] NIKMEHR N, RAVADANEGH S N. Optimal power dispatch of multi-microgrids at future smart distribution grids[J]. IEEE Transactions on Smart Grid, 2015, 6(4): 1648-1657. doi: 10.1109/TSG.2015.2396992 [10] MAZZOLA S, ASTOLFI M, MACCHI E. A detailed model for the optimal management of a multigood microgrid[J]. Applied Energy, 2015, 154: 862-873. doi: 10.1016/j.apenergy.2015.05.078 [11] ABUELRUB A, HAMED F, SAADEH O. Microgrid integrated electric vehicle charging algorithm with photovoltaic generation[J]. Journal of Energy Storage, 2020, 32: 101858. doi: 10.1016/j.est.2020.101858 [12] SHI W, XIE X, CHU C C, et al. Distributed optimal energy management in microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(3): 1137-1146. doi: 10.1109/TSG.2014.2373150 [13] ABDELTAWAB H H, MOHAMED Y A R I. Mobile energy storage scheduling and operation in active distribution systems[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 6828-6840. doi: 10.1109/TIE.2017.2682779 [14] KIM J, DVORKIN Y. Enhancing distribution system resilience with mobile energy storage and microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 4996-5006. doi: 10.1109/TSG.2018.2872521 [15] YAO S, WANG P, ZHAO T. Transportable energy storage for more resilient distribution systems with multiple microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3331-3341. doi: 10.1109/TSG.2018.2824820 [16] 黄敬尧, 侯登旭, 朱嘉帅, 等. 考虑电动汽车移动储能的微电网调度[J]. 电测与仪表, 2021, 58(2): 81-89.HUANG J Y, HOU D X, ZHU J S, et al. Microgrid scheduling considering mobile energy storage for electric vehicles[J]. Electrical Measurement and Instrumentation, 2021, 58(2): 81-89. [17] KWON S Y, PARK J Y, KIM Y J. Optimal V2G and route scheduling of mobile energy storage devices using a linear transit model to reduce electricity and transportation energy losses[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 34-47. doi: 10.1109/TIA.2019.2954072 [18] SABOORI H, JADID S. Mobile and self-powered battery energy storage system in distribution networks-Modeling, operation optimization, and comparison with stationary counter-part[J]. Journal of Energy Storage, 2021, 42: 103068. doi: 10.1016/j.est.2021.103068 [19] 陈俊硕, 谷雨沛, 薛晓波, 等. 综合交通网故障和光伏不确定性的配电网移动储能配置规划[J]. 长安大学学报, 2024, 44(5): 89-99.CHEN J S, GU Y P, XUE X B, et al. Distribution network mobile energy storage allocation planning with integrated transportation network faults and photovoltaic uncertainty[J]. Journal of Chang'an University, 2024, 44(5): 89-99. [20] CHEN C, WANG J, TON D. Modernizing distribution system restoration to achieve grid resiliency against extreme weather events: an integrated solution[J]. Proceedings of the IEEE, 2017, 105(7): 1267-1288. doi: 10.1109/JPROC.2017.2684780 [21] YAO S, WANG P, LIU X, et al. Rolling optimization of mobile energy storage fleets for resilient service restoration[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1030-1043. doi: 10.1109/TSG.2019.2930012 [22] JOHN B, GHOSH A, GOYAL M, et al. A DC power exchange highway based power flow management for interconnected microgrid clusters[J]. IEEE Systems Journal, 2019, 13(3): 3347-3357. doi: 10.1109/JSYST.2019.2911625 [23] LIU X, SOH C B, ZHAO T, et al. Stochastic scheduling of mobile energy storage in coupled distribution and transportation networks for conversion capacity enhancement[J]. IEEE Transactions on Smart Grid, 2020, 12(1): 117-130. http://www.zhangqiaokeyan.com/academic-journal-foreign_smart-grid-ieee-transactions_thesis/0204120425314.html [24] 桑博, 张涛, 刘亚杰, 等. 多微电网能量管理系统研究综述[J]. 中国电机工程学报, 2020, 40(10): 3077-3093.SANG B, ZHANG T, LIU Y J, et al. A review of research on energy management systems for multi-microgrids[J]. Chinese Journal of Electrical Engineering, 2020, 40(10): 3077-3093. [25] LI Y, LU Z, MICHALEK J J. Diagonal quadratic approximation for parallelization of analytical target cascading[J]. Journal of Mechanical Design, 2008, 130(5): 051402. http://www.xueshufan.com/publication/1980799771 [26] COLSON C M, NEHRIR M H. Comprehensive real-time microgrid power management and control with distributed agents[J]. IEEE Transactions on Smart Grid, 2013, 4(1): 617-627. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6415341 [27] SHI M, WANG H, XIE P, et al. Distributed energy scheduling for integrated energy system clusters with peer-to-peer energy transaction[J]. IEEE Transactions on Smart Grid, 2023, 14(1): 142-156. [28] GAO H, LIU J, WANG L, et al. Decentralized energy management for networked microgrids in future distribution systems[J]. IEEE Transactions on Power Systems, 2018, 33(4): 3599-610. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8106809 [29] WU J, GUAN X. Coordinated multi-microgrids optimal control algorithm for smart distribution management system[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 2174-2181. http://www.onacademic.com/detail/journal_1000036500666010_85bf.html [30] 王程, 刘念. 基于交替方向乘子法的互联微电网系统分布式优化调度[J]. 电网技术, 2016, 40(9): 2675-2681.WANG C, LIU N, Distributed optimal scheduling of interconnected microgrid systems based on the alternating direction multiplier method[J]. Grid Technology, 2016, 40(9): 2675-2681. -