留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速公路微电网系统能量双层优化调度方法

牛明博 吴浩 魏建民 王飚 王虎城 廖真 唐文斌

牛明博, 吴浩, 魏建民, 王飚, 王虎城, 廖真, 唐文斌. 高速公路微电网系统能量双层优化调度方法[J]. 交通信息与安全, 2024, 42(5): 136-147. doi: 10.3963/j.jssn.1674-4861.2024.05.013
引用本文: 牛明博, 吴浩, 魏建民, 王飚, 王虎城, 廖真, 唐文斌. 高速公路微电网系统能量双层优化调度方法[J]. 交通信息与安全, 2024, 42(5): 136-147. doi: 10.3963/j.jssn.1674-4861.2024.05.013
NIU Mingbo, WU Hao, WEI Jianmin, WANG Biao, WANG Hucheng, LIAO Zhen, TANG Wenbin. A Bi-Layer Optimal Dispatch Method of Energy in Freeway Micro-grid Systems[J]. Journal of Transport Information and Safety, 2024, 42(5): 136-147. doi: 10.3963/j.jssn.1674-4861.2024.05.013
Citation: NIU Mingbo, WU Hao, WEI Jianmin, WANG Biao, WANG Hucheng, LIAO Zhen, TANG Wenbin. A Bi-Layer Optimal Dispatch Method of Energy in Freeway Micro-grid Systems[J]. Journal of Transport Information and Safety, 2024, 42(5): 136-147. doi: 10.3963/j.jssn.1674-4861.2024.05.013

高速公路微电网系统能量双层优化调度方法

doi: 10.3963/j.jssn.1674-4861.2024.05.013
基金项目: 

国家重点研发计划项目 2021YFB1600200

秦创原“科学家+工程师”队伍建设项目 2022KXJ-078

详细信息
    作者简介:

    牛明博(1981—),博士,教授.研究方向:电力系统与储能技术、集成交通系统与智能道路技术等. E-mail: ivr.niu@chd.edu.cn

    通讯作者:

    王飚(1969—),博士,副教授.研究方向:智能电网与传输理论、分布式能源微网智能自洽方向等. E-mail: wangbiao@chd.edu.cn

  • 中图分类号: U491

A Bi-Layer Optimal Dispatch Method of Energy in Freeway Micro-grid Systems

  • 摘要: 随着国家“双碳战略”的推进,新能源在交通领域的应用与能源转型得到快速的发展。在我国西部无电网或弱电网地区,风光资源充足,可采用微电网为路域用能设施供能。但高速公路微电网存在纵向跨度大、离散分布、出力不均衡、沿线配电网建设运行成本高等问题,因此,将移动储能调度设备引入到高速公路微电网能源调度系统结构中。在此基础上,构建高速公路微电网及移动储能系统模型,提出新的调度成本机制及能量调度双层架构。同时,高速公路微电网系统具有长距离带状结构,会造成微电网子控制器调度产生通信负担。针对此问题提出交替方向乘子法分布式双层优化调度策略,该方法将全局问题拆解为局部问题进行并行优化求解,各微电网仅需与相邻微电网进行通信,相互之间交换期望能源需求信息。系统以高速公路微电网总运行成本最小作为耦合变量,通过增广拉格朗日罚函数进行松弛,将原优化问题解耦为各系统的独立子优化问题,并采用双层循环求解的方式,最终获得全局最优调度方案。本文通过数值仿真分析验证可再生能源利用率提升了15.3%,在实现高速公路用能的基础上保障了经济性。

     

  • 图  1  能源调度系统结构

    Figure  1.  Energy dispatch system structure

    图  2  本地优化控制流程图

    Figure  2.  Local optimization control flow chart

    图  3  高速公路多微电网系统优化调度流程图

    Figure  3.  Optimal dispatching flow chart of highway multi-microgrid system

    图  4  移动储能设备结构图

    Figure  4.  Mobile energy storage equipment structure diagram

    图  5  并行方ADMM的优化求解流程图

    Figure  5.  Flowchart of optimization solution of parallelADMM

    图  6  能源调度仿真示意图

    Figure  6.  Schematic diagram of energy dispatch simulation

    图  7  各MG中RES输出功率

    Figure  7.  Renewable energy output power in each MG

    图  8  负载需求曲线

    Figure  8.  Load demand curve

    图  9  可控负载需求

    Figure  9.  Controllable load requirements

    图  10  市场电价曲线

    Figure  10.  Market electricity price curve

    图  11  RES与负载供需不平衡分布

    Figure  11.  RES and load supply and demand imbalance distribution

    图  12  DNO与各微电网的优化调度

    Figure  12.  DNO and optimal dispatch of each microgrid

    图  13  本地储能单元优化结果

    Figure  13.  Optimization results of local energy storage unit

    图  14  可控负荷优化结果

    Figure  14.  Controllable load optimization results

    图  15  控制周期内各微电网系统运营成本

    Figure  15.  Operating costs of each microgrid system during the control period

    图  16  可再生能源利用率

    Figure  16.  Available energy utilization rate

    表  1  自洽微电网参数设定

    Table  1.   Self-consistent microgrid parameter settings

    参数 数值 参数 数值
    $P_{i, \min }^L / \mathrm{MW}$ 0.5 $\eta_i^{\mathrm{ch}}$ 0.89
    $P_{i, \max }^L / \mathrm{MW}$ 5 $\eta_i^{d \mathrm{ch}}$ 0.85
    $P_{i, \min }^{\mathrm{RES}} / \mathrm{MW}$ 0.25 $D o D_i$ 0.2
    $P_{i, \max }^{\mathrm{RES}} / \mathrm{MW}$ 6 $\varepsilon^{\mathrm{pri}}$ e-3
    $\Delta P_{i, \max }^L / \mathrm{MW}$ 4 $\varepsilon^{\text {dual }}$ e-5
    $E_i(0) / \mathrm{MW}$ 2 $\ell_1$ 0.3
    $E_i^{\max } / \mathrm{MW}$ 4 $\ell_2$ 0.3
    $t / h$ 24 $\ell_3$ 0.4
    下载: 导出CSV

    表  2  MESS参数设定

    Table  2.   MESS parameter settings

    参数 数值 参数 数值
    $C^{\mathrm{MESS} / \mathrm{MWh}} / \text { 万元 }$ 6 $C^{\mathrm{ES}} / \text { 万元 }$ 0.5
    $C^{\text {truck }} / \text { 万元 }$ 5 $C_i^M / \text { 万元 }$ 0.42
    $C_i^{\mathrm{O} \mathrm{p}} / \text { 万元 }$ 0.6 $d_{12} / \mathrm{km}$ 90
    $E_{\max }^{\mathrm{MESS}}(k) / \mathrm{MW} \cdot \mathrm{~h}$ 1 $d_{23} / \mathrm{km}$ 70
    $P_{\text {rated }}^{\text {MESS }} / \mathrm{MW}$ 1 $d_{13} / \mathrm{km}$ 80
    $V_{\text {avg }} / \mathrm{km} / \mathrm{h}$ 90 NMESS 2
    下载: 导出CSV
  • [1] SONG M, ZHENG W, WANG Z. Environmental efficiency and energy consumption of highway transportation systems in China[J]. International Journal of Production Economics, 2016, 181: 441-449. doi: 10.1016/j.ijpe.2015.09.030
    [2] GUO Q, LIANG H, LIAO H, et al. Statistical analysis and research on energy consumption in highway service area[C]. 7th International Conference on Intelligent Computing, Xi'an, China: IEEE, 2022.
    [3] JIN C, SHENG X, GHOSH P. Optimized electric vehicle charging with intermittent renewable energy sources[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(6): 1063-1072. doi: 10.1109/JSTSP.2014.2336624
    [4] CALVILLO C F, SÁNCHEZ-MIRALLES Á, VILLAR J. Synergies of electric urban transport systems and distributed energy resources in smart cities[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2445-2453. doi: 10.1109/TITS.2017.2750401
    [5] 贾小团. 风光互补发电系统在高速公路中的应用[J]. 运输经理世界, 2022(16): 149-151.

    JIA X T. Application of wind-solar complementary power generation system in highway[J]. Transportation Manager World, 2022, (16): 149-151.
    [6] XU H, CAO S, XU X. The development of highway infrastructure and CO2 emissions: the mediating role of agglomeration[J]. Journal of Cleaner Production, 2022, 337: 130501. doi: 10.1016/j.jclepro.2022.130501
    [7] CRUZ J D L, WU Y, CANDELO-BECERRA J E, et al. Review of networked microgrid protection: architectures, challenges, solutions, and future trends[J]. CSEE Journal of Power and Energy Systems, 2024, 10(2): 448-467. http://d.wanfangdata.com.cn/periodical/zgdjgcxhdlynyxtxb202402002
    [8] YANG J, SU C. Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty[J]. Energy, 2021, 223: 120043. doi: 10.1016/j.energy.2021.120043
    [9] NIKMEHR N, RAVADANEGH S N. Optimal power dispatch of multi-microgrids at future smart distribution grids[J]. IEEE Transactions on Smart Grid, 2015, 6(4): 1648-1657. doi: 10.1109/TSG.2015.2396992
    [10] MAZZOLA S, ASTOLFI M, MACCHI E. A detailed model for the optimal management of a multigood microgrid[J]. Applied Energy, 2015, 154: 862-873. doi: 10.1016/j.apenergy.2015.05.078
    [11] ABUELRUB A, HAMED F, SAADEH O. Microgrid integrated electric vehicle charging algorithm with photovoltaic generation[J]. Journal of Energy Storage, 2020, 32: 101858. doi: 10.1016/j.est.2020.101858
    [12] SHI W, XIE X, CHU C C, et al. Distributed optimal energy management in microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(3): 1137-1146. doi: 10.1109/TSG.2014.2373150
    [13] ABDELTAWAB H H, MOHAMED Y A R I. Mobile energy storage scheduling and operation in active distribution systems[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 6828-6840. doi: 10.1109/TIE.2017.2682779
    [14] KIM J, DVORKIN Y. Enhancing distribution system resilience with mobile energy storage and microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 4996-5006. doi: 10.1109/TSG.2018.2872521
    [15] YAO S, WANG P, ZHAO T. Transportable energy storage for more resilient distribution systems with multiple microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3331-3341. doi: 10.1109/TSG.2018.2824820
    [16] 黄敬尧, 侯登旭, 朱嘉帅, 等. 考虑电动汽车移动储能的微电网调度[J]. 电测与仪表, 2021, 58(2): 81-89.

    HUANG J Y, HOU D X, ZHU J S, et al. Microgrid scheduling considering mobile energy storage for electric vehicles[J]. Electrical Measurement and Instrumentation, 2021, 58(2): 81-89.
    [17] KWON S Y, PARK J Y, KIM Y J. Optimal V2G and route scheduling of mobile energy storage devices using a linear transit model to reduce electricity and transportation energy losses[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 34-47. doi: 10.1109/TIA.2019.2954072
    [18] SABOORI H, JADID S. Mobile and self-powered battery energy storage system in distribution networks-Modeling, operation optimization, and comparison with stationary counter-part[J]. Journal of Energy Storage, 2021, 42: 103068. doi: 10.1016/j.est.2021.103068
    [19] 陈俊硕, 谷雨沛, 薛晓波, 等. 综合交通网故障和光伏不确定性的配电网移动储能配置规划[J]. 长安大学学报, 2024, 44(5): 89-99.

    CHEN J S, GU Y P, XUE X B, et al. Distribution network mobile energy storage allocation planning with integrated transportation network faults and photovoltaic uncertainty[J]. Journal of Chang'an University, 2024, 44(5): 89-99.
    [20] CHEN C, WANG J, TON D. Modernizing distribution system restoration to achieve grid resiliency against extreme weather events: an integrated solution[J]. Proceedings of the IEEE, 2017, 105(7): 1267-1288. doi: 10.1109/JPROC.2017.2684780
    [21] YAO S, WANG P, LIU X, et al. Rolling optimization of mobile energy storage fleets for resilient service restoration[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1030-1043. doi: 10.1109/TSG.2019.2930012
    [22] JOHN B, GHOSH A, GOYAL M, et al. A DC power exchange highway based power flow management for interconnected microgrid clusters[J]. IEEE Systems Journal, 2019, 13(3): 3347-3357. doi: 10.1109/JSYST.2019.2911625
    [23] LIU X, SOH C B, ZHAO T, et al. Stochastic scheduling of mobile energy storage in coupled distribution and transportation networks for conversion capacity enhancement[J]. IEEE Transactions on Smart Grid, 2020, 12(1): 117-130. http://www.zhangqiaokeyan.com/academic-journal-foreign_smart-grid-ieee-transactions_thesis/0204120425314.html
    [24] 桑博, 张涛, 刘亚杰, 等. 多微电网能量管理系统研究综述[J]. 中国电机工程学报, 2020, 40(10): 3077-3093.

    SANG B, ZHANG T, LIU Y J, et al. A review of research on energy management systems for multi-microgrids[J]. Chinese Journal of Electrical Engineering, 2020, 40(10): 3077-3093.
    [25] LI Y, LU Z, MICHALEK J J. Diagonal quadratic approximation for parallelization of analytical target cascading[J]. Journal of Mechanical Design, 2008, 130(5): 051402. http://www.xueshufan.com/publication/1980799771
    [26] COLSON C M, NEHRIR M H. Comprehensive real-time microgrid power management and control with distributed agents[J]. IEEE Transactions on Smart Grid, 2013, 4(1): 617-627. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6415341
    [27] SHI M, WANG H, XIE P, et al. Distributed energy scheduling for integrated energy system clusters with peer-to-peer energy transaction[J]. IEEE Transactions on Smart Grid, 2023, 14(1): 142-156.
    [28] GAO H, LIU J, WANG L, et al. Decentralized energy management for networked microgrids in future distribution systems[J]. IEEE Transactions on Power Systems, 2018, 33(4): 3599-610. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8106809
    [29] WU J, GUAN X. Coordinated multi-microgrids optimal control algorithm for smart distribution management system[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 2174-2181. http://www.onacademic.com/detail/journal_1000036500666010_85bf.html
    [30] 王程, 刘念. 基于交替方向乘子法的互联微电网系统分布式优化调度[J]. 电网技术, 2016, 40(9): 2675-2681.

    WANG C, LIU N, Distributed optimal scheduling of interconnected microgrid systems based on the alternating direction multiplier method[J]. Grid Technology, 2016, 40(9): 2675-2681.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  15
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-30
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回