Disaggregate Carbon Emission Assessment Method and the Pathway to Carbon Neutrality in Container Ports
-
摘要: 针对港口向绿色转型,碳排放核算以及港口绿色化转型成本核算问题,通过对集装箱港口物流作业过程的深入分析,构建其碳排放评价方法并探讨其“碳中和”实现路径,以促进其可持续发展。据集装箱港口吞吐量历史数据,通过GM(1,1)模型方法对未来年港口吞吐量进行预测,并基于预测的港口吞吐量,通过分段核算港口各物流作业过程中港口机械与仓储办公等基础设施的平均耗能,进行港口碳排放“自下而上”的预测。针对港口碳排放的主要来源,研究一系列碳减排路径和策略,包括港口设施升级、港口技术革新、港口能源绿色化和政策激励等措施,并针对每个措施的成本进行核算。最后以某集装箱港口为例,分析各项碳减排措施的减排效果和成本。结果表明:随着港口吞吐量的不断增长,港口设施升级和港口技术革新只能够降低港口“碳达峰”时的碳排放量,且在“碳达峰”之后碳排放量不会再减少,与不采取措施的基准情景相比,只采取港口设施升级措施年度最大碳减排比例为38.49%,同时实施港口设施升级和技术革新实现年度最大碳减排比例为61.29%;在实施港口设施升级和技术革新的基础上,增加港口能源绿色化措施,提高新能源应用比例,能够实现港口“碳中和”目标。在政策激励的情况下,能够提前15年实现“碳中和”。各项港口碳减排措施的应用在减少碳排放的同时,还能够降低港口能源应用成本,在其直接经济效益提升方面也具有一定的正向效果。Abstract: In response to the green transition of ports, carbon emission accounting, and the cost estimation of adopting greening measures, an in-depth analysis of the logistics operations at container ports is conducted. It aims to establish a carbon emission evaluation method and explore pathways to achieving carbon neutrality, thereby promoting sustainable development. This study employs the GM(1, 1) model to forecast future port throughput based on historical data at container ports. Based on these predictions, a segmented approach is used to assess the average energy consumption of port machinery, storage, office facilities, and other infrastructure during logistics operations, enabling a bottom-up prediction of port carbon emissions. To address the major sources of carbon emissions at ports, several carbon reduction strategies and pathways are explored, including facility upgrades, technological innovations, green energy adoption, and policy incentives. A detailed cost analysis is conducted for each strategy. A case study of a specific container port demonstrates the emission reduction potential and costs associated with these measures. Results show that as throughput continues to increase, facility upgrades and technological innovations can only reduce carbon emissions significantly during the port's peak operations, and after the peak stage, emissions will not further decrease. Compared to the baseline scenario without measures, implementing only facility upgrades achieves a maximum annual carbon reduction of 38.49%, while combining facility upgrades with technological innovations yields a maximum annual reduction of 61.29%. Furthermore, the introduction of green energy measures facilitates the achievement of carbon neutrality, and policy incentives can accelerate this process by up to 15 years. The application of these measures not only reduces carbon emissions but also lowers port energy costs, thus contributing positively to the direct economic benefits of ports during green transitions.
-
Key words:
- green ports /
- container ports /
- carbon emission reduction accounting /
- new energy /
- Carbon neutrality
-
表 1 A港2013—2022年港口吞吐量
Table 1. Port throughput of the port A from 2013 to 2022
年份 港口吞吐量/万TEU 年份 港口吞吐量/万TEU 2013 86 2018 147 2014 100 2019 161 2015 106 2020 157 2016 112 2021 184 2017 127 2022 202 表 2 港口设备能源消耗因子
Table 2. Energy consumption factors of port equipment
装卸工具 消耗能源形式 岸桥 柴油驱动(/ L/TEU)
-电力驱动(kW·h/TEU)
10.235 6场桥 柴油驱动(/ L/TEU)
1.377 3电力驱动(kW·h/TEU)
2.920 7内集卡 柴油驱动(/ L/km)
0.9电力驱动(/ kW·h/km)
3.4船舶作业用电 柴油发电(/ L/艘)
75岸电(/ kW·h /艘)
78.9表 3 港口设备成本参数
Table 3. Port equipment cost parameters
设备类别 建设成本(/ 万元/台) 维护成本(/ 万元/年) 岸桥 2 600 9 3 场桥 900 0.8 集卡 70 8.4 岸电 165 8.25 信息系统 200 10 新能源 0.45 0.04 表 4 2021年各区域电网排放因子
Table 4. Emissionfactors of each regional national grid in 2021
地区 因子(/ kgCO2/kWh) 华北 0.712 0 东北 0.601 2 华东 0.599 2 华中 0.535 4 西北 0.595 1 南方 0.432 6 西南 0.211 3 表 5 碳减排措施具体执行方案
Table 5. Carbon reduction measures specific implementation plan
港口碳减排措施 执行方案 港口设施升级 每年对15%的场桥进行油改电升级,对20%的内集卡进行油改电升级,岸使用比例按照 港口能源优化 每年20%的比例增长每隔5年更新1次自洽率,每次更新自洽率增长12.5% 港口技术革新 在2025年引入堆场信息化管理系统,平均翻箱次数从9次减少到4次 政策激励 场桥升级比例增加到20%,内集卡升级比例增加到25%,岸电使用增长率为30%,每次更新自洽率增长20% 表 6 场景具体措施
Table 6. Scenario-specific measures
场景 碳减排措施 基准场景 不采取任何碳减排措施,各设备电气化比例保持现状 场景1 港口设施升级 场景2 港口设施升级和港口技术革新 场景3 港口技术升级、港口技术革新和港口能源优化 场景4 考虑政策激励的港口技术升级、港口技术革新和港口能源优化 表 7 不同措施单位碳减排量综合成本
Table 7. Comprehensive cost per unit of carbon reduction of different measures
措施 年平均综合成本/万元 年平均碳减排量/tCO2 单位碳减排量综合成本(/ 元/tCO2) 港口设施升级 -8 365.83 88 752.74 -942.6 港口技术革新 -4 545.01 53 929.10 -842.77 港口能源优化 -2 611.50 50 260.52 -519.59 -
[1] ALDUNCE P, BLANCO G, CALVIN K, et al. AR6 synthesis report: climate change 2023[R]. Switzerland: IPCC, 2023. [2] 闫全伟. 低碳视角下冷藏集装箱多式联运路径优化及算法研究[D]. 河南: 河南农业大学, 2024.YAN Q W. Research on multimodal transport path optimization and algorithm of refrigerated containers from the perspective of low carbon[D]. Henan: Henan Agricultural University, 2024. (in Chinese) [3] 李政. 我国交通运输业碳排放分析[J]. 综合运输, 2022, 44 (5): 24-27.LI Z. Carbon emission analysis of China's transportation industry[J]. IntegratedTransport, 2022, 44(5): 24-27. (in Chinese) [4] MARTÍNEZ-MOYA J, VAZQUEZ-PAJA B, MALDONADO J A G. Energy efficiency and CO2 emissions of port container terminal equipment: evidence from the port of valencia[J]. Energy Policy, 2019, 131: 312-319. doi: 10.1016/j.enpol.2019.04.044 [5] MISRAA, PANCHABIKESAN K, GOWRISHANKAR S K, et al. GHG emission accounting and mitigation strategies to reduce the carbon footprint in conventional port activities: a case of the port of Chennai[J]. Carbon Management, 2016, 8(1): 45-56. [6] SORTE S, RODRIGUES V, RUBEN L, et al. Emission inventory for harbour-related activities: comparison of two distinct bottom-up methodologies[J]. Air Quality Atmosphere & Health, 2021, 14: 831-842. [7] KARA G, EMECEN KARA E G, OKSAS O. Estimation of land-based emissions during container terminal operations in the Ambarlı port, turkey[J]. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2022, 236(3): 779-788. doi: 10.1177/14750902211052223 [8] OKSAS O. Carbon emission strategies for container handling equipment using the activity-based method: a case study of Ambarlı container port in Turkiye[J]. Marine Policy, 2023, 149: 105480. doi: 10.1016/j.marpol.2023.105480 [9] 王晨, 杨铭, 吕梦杰, 等. 宁波港碳排放测算及低碳发展对策[J]. 宁波工程学院学报, 2015, 27(2): 69-74.WANG C, YANG M, LYU M J, et. al. Carbon emission measurement and low-carbon development countermeasures of Ningbo port[J]. Journal of Ningbo Institute of Technology, 2015, 27(2): 69-74. (in Chinese) [10] 赵瑞嘉, 谢燕, 宿博涵, 等. 集装箱港口碳排放量及碳达峰时间测算方法[J]. 大连海事大学学报, 2021, 47(4): 56-64.ZhAO R J, XIEY, SU B H, et al. Measurementmethod of carbon emission and carbon peak time of container port[J]. Journal of DalianMaritimeUniversity, 2021, 47(4): 56-64. (inChinese) [11] 杨梦楠, 王晓丽, 彭士涛, 等. 天津集装箱码头的碳排放特征研究[J]. 天津理工大学学报, 2024, 40(6): 149-154.YANG M N, WANG X L, PENG S T, et al. Carbon emission characteristics of container terminal in Tianjin[J]. Journal of Tianjin University of Technology. 2024, 40(6): 149-154. (in Chinese) [12] 任小波, 钟晓晖, 唐道贵, 等. 面向多能源融合的超大型集装箱码头能耗与排放分析[J]. 起重运输机械, 2024(4): 38-46.REN X B, ZHONG X H, TANG D G, et al. Analysis of energy consumption and emission of ultra-large container terminal for multi-energy integration[J]. Lifting and Transportation Machinery, 2024(4): 38-46. (inChinese) [13] 闫紫薇. 中国交通碳排放的测算及其影响因素的空间计量分析[D]. 北京: 北京交通大学, 2018.YAN Z W, Spatial econometric analysis of China's transportation carbon emissions and its influencing factors[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese) [14] 潘秀. 我国交通运输业碳排放影响因素及预测研究[D]. 徐州: 中国矿业大学, 2018.PAN X. Research on the influencing factors and prediction of carbon emissions in China's transportation industry[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese) [15] 邓红梅. 港口碳排放现状及减碳措施分析[J]. 中国水运, 2021(12): 98-100.DENG H M, Analysis of port carbon emission status and carbon reduction measures[J]. China Water Transport, 2021 (12): 98-100. (in Chinese) [16] 张煜, 唐可心, 徐亚军, 等. 考虑能耗节约的集装箱码头装卸设备集成调度[J]. 计算机集成制造系统, 2024, 30(7): 2608-2620.ZHANG Y, TANG K X, XU Y J, et al. Integrated scheduling of container terminal loading and unloading equipment considering energy saving[J]. Computer Integrated Manufacturing System, 2024, 30(7): 2608-2620. [17] 蒋一鹏, 袁成清, 袁裕鹏, 等. "双碳"战略下中国港口与清洁能源融合发展路径探析[J]. 交通信息与安全, 2023, 41 (2): 139-146. doi: 10.3963/j.jssn.1674-4861.2023.02.015JIANG Y P, YUAN C Q, YUAN Y P, et al. Pathway for integrated development of port and cle-an energy under strategy of carbon peaking and carbon neutralization in China[J]. Journal of Transport Information and Safety, 2023, 41(2): 139-146. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.015 [18] CANNON C, GAO Y, WUNDER L. Port of Los Angeles-Shanghai municipal transportation commission eco partnership on shore power[J]. Journal of Renewable and Sustainable Energy, 2015, 7(4). [19] SEDDIEK I S. Application of renewable energy technologies for eco-friendly sea ports[J]. Ships and Offshore Structures, 2020, 15(9): 953-962. [20] SADEK I, ELGOHARY M. Assessment of renewable energy supply for green ports with a case study[J]. Environmental Science and Pollution Research, 2020, 27(5): 5547-5558. [21] 赵亚鹏, 张佳荧, 苏持. "双碳"目标下绿色港口政策有效性实证研究-以宁波为例[J]. 海洋经济, 2023, 13(4): 81-87.ZHAO Y P, ZHANG J Y, SU C. An empirical study on the effectiveness of green port policy under the goal of"dual carbon": a case study of Ningbo[J]. Marine Economy, 2023, 13 (4): 81-87. (in Chinese) -