留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多目标蜣螂优化算法的泊位分配与能量调度联合优化方法

徐先峰 鲁婉琪 王俊哲 卢勇 李陇杰 白新禾 李芷菡

徐先峰, 鲁婉琪, 王俊哲, 卢勇, 李陇杰, 白新禾, 李芷菡. 基于多目标蜣螂优化算法的泊位分配与能量调度联合优化方法[J]. 交通信息与安全, 2024, 42(5): 111-123. doi: 10.3963/j.jssn.1674-4861.2024.05.011
引用本文: 徐先峰, 鲁婉琪, 王俊哲, 卢勇, 李陇杰, 白新禾, 李芷菡. 基于多目标蜣螂优化算法的泊位分配与能量调度联合优化方法[J]. 交通信息与安全, 2024, 42(5): 111-123. doi: 10.3963/j.jssn.1674-4861.2024.05.011
XU Xianfeng, LU Wanqi, WANG Junzhe, LU Yong, LI Longjie, BAI Xinhe, LI Zhihan. A Joint Optimization Method for Berth Allocation and Energy Scheduling Based on Non-dominated Sorting Dung Beetle Optimizer[J]. Journal of Transport Information and Safety, 2024, 42(5): 111-123. doi: 10.3963/j.jssn.1674-4861.2024.05.011
Citation: XU Xianfeng, LU Wanqi, WANG Junzhe, LU Yong, LI Longjie, BAI Xinhe, LI Zhihan. A Joint Optimization Method for Berth Allocation and Energy Scheduling Based on Non-dominated Sorting Dung Beetle Optimizer[J]. Journal of Transport Information and Safety, 2024, 42(5): 111-123. doi: 10.3963/j.jssn.1674-4861.2024.05.011

基于多目标蜣螂优化算法的泊位分配与能量调度联合优化方法

doi: 10.3963/j.jssn.1674-4861.2024.05.011
基金项目: 

国家重点研发计划项目 2021YFB2601300

中央高校基本科研业务费专项项目 300102383203

详细信息
    通讯作者:

    徐先峰(1982—),博士,副教授. 研究方向:交通能源融合、深度学习算法及应用、智能微电网等. E-mail:xxf@chd.edu.cn

  • 中图分类号: TM73

A Joint Optimization Method for Berth Allocation and Energy Scheduling Based on Non-dominated Sorting Dung Beetle Optimizer

  • 摘要: 综合泊位分配与能量调度联合优化的港口微电网是物流和能量紧密耦合的系统,为兼顾港口物流运输效率和能源系统经济性,保证港口能源系统稳定可靠运行,建立了综合考虑船舶泊位分配和微电网运行成本的多目标联合优化模型,针对单目标求解算法的局限性研究了多目标蜣螂优化算法(non-dominated sorting dung beetle optimizer,NSDBO)模型求解方法,将非支配排序策略引进算法以提高算法精度和收敛速度,同时为维持种群个体的多样性与分布均匀性,引入拥挤距离计算,衡量经非支配排序后每一层解的密集程度并对种群重新排序,获得了分布较好的Pareto解,解决了蜣螂优化算法易陷入局部最优解、全局搜索能力欠缺、收敛精度低等问题,在保证种群均匀性和多样性的同时降低了计算复杂度。通过测试系统验证了改进的多目标蜣螂优化算法与基于支配排序的NSGA-Ⅱ算法、基于分解的MOEA/D算法、改进多目标粒子群算法(improved multi-objective particle swarm optimization,IMOPSO)、拥挤距离多目标粒子群优化算法(crowding distance multi-objective particle swarm optimization DCMOPSO)相比具有更好的分布性、收敛性和均匀度。以天津某港口为算例,对多目标联合优化模型进行求解,并设置多种方案进行对比分析,结果表明,所提泊位分配模型使各个泊位上的船舶分配更加均匀,与泊位分配和能量调度独立优化相比船舶等待时长增加了4 h,但总运行成本减少了121 283元;与单目标联合优化相比总运行成本仅增加了40 225元,船舶等待时长却减少了28 h,证明了泊位分配与能量调度的合理联合优化可以在兼顾船舶等待时长和运行成本的同时,不大幅增加船舶等待时长,验证了该模型和算法策略在泊位分配与能量调度问题中的有效性和准确性,凸显了优化模型的经济优势及其优化物流系统运输效率的卓越能力。

     

  • 图  1  泊位分配与微电网能量调度联合优化模型

    Figure  1.  Joint optimization model of berth allocation and microgrid energy dispatch

    图  2  帕累托最优解及前沿示意图

    Figure  2.  Schematic diagram of Pareto optimal solution and frontier

    图  3  NSDBO算法流程

    Figure  3.  NSDBO algorithm flow

    图  4  NSDBO算法在ZDT系列测试函数上的近似帕累托前沿

    Figure  4.  Approximate Pareto front for the NSDBO algorithm on the ZDT series of test functions

    图  5  港区负荷需求及风光出力

    Figure  5.  Port load demand and wind and solar output

    图  6  多目标联合优化模型的帕累托前沿

    Figure  6.  Pareto frontiers for a multi-objective joint optimisation model

    图  7  多目标联合优化前后泊位分配方案

    Figure  7.  Berth allocation scheme before and after multi-objective joint optimization

    图  8  多目标联合优化后的能量调度方案

    Figure  8.  Energy scheduling scheme after multi-objective joint optimization

    图  9  各方案负荷对比

    Figure  9.  Load comparison of various schemes

    表  1  多目标优化算法对比测试结果

    Table  1.   Comparative test results of multi-objective optimisation algorithms

    测试函数 指标 模型
    NSGA-Ⅱ MOEA/D IMOPSO DCMOPSO NSDBO
    ZDT1 IGD mean 0.00458 0.00583 0.00632 0.00639 0.00234
    std 0.00133 0.00072 0.00093 0.00118 0.00006
    SP mean 0.05920 0.05830 0.00537 0.00680 0.00331
    std 0.00958 0.00035 0.00012 0.04380 0.00018
    ZDT2 IGD mean 0.00619 0.00436 0.00368 0.03570 0.00240
    std 0.00037 0.00068 0.00254 0.00395 0.00006
    SP mean 0.00917 0.01390 0.00769 0.00915 0.00332
    std 0.00065 0.00027 0.00044 0.00150 0.00024
    ZDT3 IGD mean 0.00597 0.00729 0.00670 0.03580 0.00254
    std 0.00202 0.00671 0.00057 0.00395 0.00007
    SP mean 0.10100 0.09820 0.00693 0.08030 0.00350
    std 0.05370 0.06320 0.00064 0.00575 0.00021
    ZDT4 IGD mean 0.03190 0.00124 0.01290 0.25300 0.00232
    std 0.05790 0.00119 0.08210 7.24100 0.00208
    SP mean 0.04020 0.04970 0.37200 0.23500 0.00335
    std 0.00826 0.00419 0.04720 0.73000 0.00016
    ZDT6 IGD mean 0.07350 0.08400 0.18500 0.16500 0.00382
    std 0.00657 0.00918 0.09980 0.98000 0.00014
    SP mean 0.09830 0.05790 0.03800 0.32100 0.0338
    std 0.00547 0.00098 0.00828 0.04530 0.10100
    下载: 导出CSV

    表  2  船舶靠港计划

    Table  2.   Ship berthing plan

    船舶编号 船舶规模 预计到达时刻 预计靠港时长/h
    1 大型 1 30
    2 小型 2 8
    3 小型 3 10
    4 中型 6 18
    5 小型 10 9
    6 小型 13 11
    7 中型 16 19
    8 中型 20 21
    9 中型 24 20
    10 大型 28 33
    11 中型 33 20
    12 小型 37 11
    13 小型 40 9
    14 中型 45 15
    下载: 导出CSV

    表  3  港口能源系统相关参数

    Table  3.   Relevant parameters of port energy system

    类型 参数 数值
    电网 峰时电价/(元/kW·h) 1.35
    平时电价/(元/kW·h) 0.82
    谷时电价/(元/kW·h) 0.38
    出力上限/(MW) 100
    储能系统 容量/(MW·h) 30
    荷电状态上/下限 $ 0.9 /0.1 $
    维护系数 0.02898
    充/放电效率 0.95
    光伏 维护系数 0.096
    使用寿命/年 20
    风机 维护系数 0.0293
    使用命/年 10
    下载: 导出CSV

    表  4  各方案结果对比

    Table  4.   Comparison of results between schemes

    方案 船舶等待时长/h 船舶物流成本/元 运维成本/元 能量交互成本/元 总运行成本/元
    方案1 270 61200 5120 1805129 1871449
    方案2 265 59200 6828 1823845 1889873
    方案3 297 73600 3582 1651183 1728365
    方案4 269 60800 5371 1702418 1768590
    下载: 导出CSV
  • [1] TAO Y C, QIU J, LAI S Y, et al. Flexible voyage scheduling and coordinated energy management strategy of all-electric ships and seaport microgrid[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(3): 3211-3222.
    [2] 蒋一鹏, 袁成清, 袁裕鹏, 等". 双碳"战略下中国港口与清洁能源融合发展路径探析[J]. 交通信息与安全, 2023, 41(2): 139-146. doi: 10.3963/j.jssn.1674-4861.2023.02.015

    JANG Y P, YUAN C G, YUAN Y P, et al. Pathway for Integrated development of port and clean energy under strategy of carbon peaking and carbon Neutralization in China[J]. Journal of Transport Information and Safety, 2023, 41(2): 139-146. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.015
    [3] AHAMAD N B B, GUERRERO J M, SU C L, et al. Microgrids technologies in future seaports[C]. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, Palermo, Italy: IEEE, 2018.
    [4] 方斯顿, 赵常宏, 丁肇豪, 等. 面向碳中和的港口综合能源系统(二): 能源-交通融合中的柔性资源与关键技术[J]. 中国电机工程学报, 2023, 43(3): 950-969.

    FANG S D, ZHAO C H, DING Z H, et al. Port integrated energy systems toward carbon neutrality(Ⅱ): flexible resources and key technologies in energy-transportation integration[J]. Proceedings of the CSEE, 2023, 43(3): 950-968. (in Chinese)
    [5] BOUZEKRI H, ALPAN G, GIARD V. Integrated laycan and berth allocation and time-invariant quay crane assignment problem in tidal ports with multiple quays[J]. European Journal of Operational Research, 2021, 293(3): 892-909. doi: 10.1016/j.ejor.2020.12.056
    [6] BACALHAU E T, CASACIO L, DEAZEVEDOAT. New hybrid genetic algorithms to solve dynamic berth allocation problem[J]. Expert Systems With Applications, 2021, 167: 114198. doi: 10.1016/j.eswa.2020.114198
    [7] YU J J, TANG G L, VOSS S, et al. Berth allocation and quay crane assignment considering the adoption of different green technologies[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 176: 103185. doi: 10.1016/j.tre.2023.103185
    [8] 桂小娅, 陆志强, 韩笑乐. 集装箱码头连续型泊位与岸桥集成调度[J]. 上海交通大学学报, 2013, 47(2): 226-229.

    GUI X Y, LU Z Q, HAN X L. Integrating optimization method for continuous berth and quay crane scheduling in container terminals[J]. Journal of Shanghai Jiaotong University, 2013, 47(2): 226-229. (in Chinese)
    [9] YU J J, TANG G L, SONG X Q. Collaboration of vessel speed optimization with berth allocation and quay crane assignment considering vessel service differentiation[J]. Transportation Research Part E: Logistics and Transportation Review, 2022, 160: 102651. doi: 10.1016/j.tre.2022.102651
    [10] YU J J, TANG G L, VOSS S, et al. Berth allocation and quay crane assignment considering the adoption of different green technologies[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 176: 103185. green technologies[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 176: 103185. doi: 10.1016/j.tre.2023.103185
    [11] 代永该, 庞利宝, 黄麟富. 考虑能耗的集装箱码头泊位与岸边集装箱起重机联合调度研究[J]. 港口装卸, 2023, (3): 33-38.

    DAI Y G, PANG L B, HUANG L F. Study on joint dispatching of container terminal berths and quayside container cranes considering energy consumption[J]. Port Operation, 2023, (3): 33-38. (in Chinese)
    [12] SONG T L, LI Y, ZHANG X P, et al. Integrated port energy system considering integrated demand response and energy interconnection[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105654.
    [13] 王萧博, 黄文焘, 邰能灵, 等. 面向源储优化配置的港口微电网运行场景高保真压缩与重构方法[J]. 中国电机工程学报, 2023, 43(15): 5839-5850.

    WANG X B, HUANG W T, TAI N L, et al. A high-fidelity compression and reconstruction method of port microgrid operation scenarios for optimal source-storage allocation[J]. Proceedings of the CSEE, 2023, 43(15): 5839-5850. (in Chinese)
    [14] THIRUNAVUKKARASU G S, SEYEDMAHMOUDIAN M, JAMEI E, et al. Role of optimization techniques in microgrid energy management systems: a review[J]. Energy Strategy Reviews, 2022, 43: 100899. doi: 10.1016/j.esr.2022.100899
    [15] WANG Y, DONG W, YANG Q. Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets[J]. Applied Energy, 2022, 310: 118528. doi: 10.1016/j.apenergy.2022.118528
    [16] MERABET A, AL-DURRA A, EL-SAADANY E F. Energy management system for optimal cost and storage utilization of renewable hybrid energy microgrid[J]. Energy Conversion and Management, 2022, 252: 115116. doi: 10.1016/j.enconman.2021.115116
    [17] ROSLAN M F, HANNAN M A, KER P J, et al. Scheduling controller for microgrids energy management system using optimization algorithm in achieving cost saving and emission reduction[J]. Applied Energy, 2021, 292: 116883. doi: 10.1016/j.apenergy.2021.116883
    [18] FANG S D, WANG Y, GOU B, et al. Towards future green maritime transportation: an overview of seaport microgrids and all-electric ships[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 207-219. doi: 10.1109/TVT.2019.2950538
    [19] MAO A J, YU T T, DING Z H, et al. Optimal scheduling for seaport integrated energy system considering flexible berth allocation[J]. Applied Energy, 2022, 308: 118386. doi: 10.1016/j.apenergy.2021.118386
    [20] IRIS C, LAM J S L. Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty[J]. Omega-international Journal of Management Science, 2021, 103: 102445.
    [21] 普月, 刘皓明, 王健, 等. 考虑多源激励的港口能流-物流全过程协同调度优化[J]. 中国电机工程学报, 2023, 43 (20): 7912-7929.

    PU Y, LIU H M, WANG J, et al. Co-scheduling optimisation of the whole process of energy flow-logistics in ports considering multi-source incentives[J]. Proceedings of the CSEE, 2023, 43(20): 7912-7929. (in Chinese)
    [22] ZHANG Y, LIANG C J, SHI J, et al. Optimal port microgrid scheduling incorporating onshore power supply and berth allocation under uncertainty[J]. Applied Energy, 2022, 313: 118856. doi: 10.1016/j.apenergy.2022.118856
    [23] FAN S L, AI Q A, XU G D, et al. Cooperative coordination between port microgrid and berthed ships with emission limitation and peak awareness[J]. Energy Reports, 2023, (9): 1657-1670.
    [24] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. doi: 10.1007/s11227-022-04959-6
    [25] RAMIREZ-OCHOA D D, PEREZ-DOMINGUEZ LA, MARTINEZ-GOMEZ E A, et al. PSO, a swarm intelligence-based evolutionary algorithm as a decision-making strategy: a review[J]. Symmetry, 2022, 14(3): 455-458. doi: 10.3390/sym14030455
    [26] WU R C, SONG J C, HAO M R, et al. Short term load forecasting method for regional intelligent distribution network based on deep learning[C]. 7th International Conference on Smart Grid and Smart Cities, Lanzhou, China: IEEE, 2023.
    [27] SHOU S A, LUO H R, ZHANG R H, et al. Power quality monitoring point configuration of distribution network based on dung beetle optimization algorithm considering panoramic perception[C]. 2023 3rd International Conference on Electrical Engineering and Mechatronics Technology, NanJing, China: IEEE, 2023.
    [28] WANG Z D, HUANG L L, YANG S X, et al. A quasi-oppositional learning of updating quantum state and Q-learning based on the dung beetle algorithm for global optimization[J]. Alexandria Engineering Journal, 2023, 81: 469-488. doi: 10.1016/j.aej.2023.09.042
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  38
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-08
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回