留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向公路交通的光水互补自洽微网系统规划模型

师瑞峰 王佳美 张杰 黄全胜 谭晓雨 毛宁 刘杰

师瑞峰, 王佳美, 张杰, 黄全胜, 谭晓雨, 毛宁, 刘杰. 面向公路交通的光水互补自洽微网系统规划模型[J]. 交通信息与安全, 2024, 42(5): 63-71. doi: 10.3963/j.jssn.1674-4861.2024.05.007
引用本文: 师瑞峰, 王佳美, 张杰, 黄全胜, 谭晓雨, 毛宁, 刘杰. 面向公路交通的光水互补自洽微网系统规划模型[J]. 交通信息与安全, 2024, 42(5): 63-71. doi: 10.3963/j.jssn.1674-4861.2024.05.007
SHI Ruifeng, WANG Jiamei, ZHANG Jie, HUANG Quansheng, TAN Xiaoyu, MAO Ning, LIU Jie. A Study on the Planning of Photovoltaic-hydropower Complementary and Self-consistent Microgrid System for Road Transportation[J]. Journal of Transport Information and Safety, 2024, 42(5): 63-71. doi: 10.3963/j.jssn.1674-4861.2024.05.007
Citation: SHI Ruifeng, WANG Jiamei, ZHANG Jie, HUANG Quansheng, TAN Xiaoyu, MAO Ning, LIU Jie. A Study on the Planning of Photovoltaic-hydropower Complementary and Self-consistent Microgrid System for Road Transportation[J]. Journal of Transport Information and Safety, 2024, 42(5): 63-71. doi: 10.3963/j.jssn.1674-4861.2024.05.007

面向公路交通的光水互补自洽微网系统规划模型

doi: 10.3963/j.jssn.1674-4861.2024.05.007
基金项目: 

国家重点研发计划项目 2021YFB2601300

交通排放控制监测技术实验室开放基金项目 (2024)JH-F003

详细信息
    通讯作者:

    师瑞峰(1977—),博士,教授. 研究方向:交通自洽能源系统规划、综合能源系统优化调度. E-mail:shi.ruifeng@ncepu.edu.cn

  • 中图分类号: U491.5+4

A Study on the Planning of Photovoltaic-hydropower Complementary and Self-consistent Microgrid System for Road Transportation

  • 摘要: 自2020年9月中国提出“碳达峰·碳中和”目标后,公路交通领域绿色转型发展成为亟待解决的重点任务。利用高速公路沿线清洁能源建立自洽微网系统,发展交通与能源一体化已成为减少碳排放、完成交通用能清洁化的必由之路。结合我国西部偏远地区公路交通系统难以接入大电网且光水资源丰富的特点,本文以偏远地区的独立交通微网为研究对象,研究了基于小水电的光水互补系统架构,并建立了基于该架构的公路交通光水互补自洽微网系统规划模型。提出了小水电为主导、光伏为辅助的光水互补系统控制运行策略;以系统经济性和供电稳定性最优为优化目标,采用粒子群优化算法进行了典型算例优化求解与研究方案对比分析,形成了面向公路交通的光水互补自洽微网系统规划推荐方案。研究结果表明:在光水互补方案中,系统的稳定供电率可以达到99.64%,相较于单一光伏电站供给方案,其综合年成本降低43.05万元,系统缺电率降低2.5%;相较于单一小水电站供给方案,其综合年成本仅增加1.53万元,而系统缺电率降低1.59%,验证了提出的光水互补自洽微网系统规划模型的有效性,为后续相关工程实践提供了参考借鉴。

     

  • 图  1  光水互补自洽微网系统架构

    Figure  1.  Architecture of photovoltaic-hydropower complementary self-consistent micro-network system

    图  2  光水互补自洽微网系统运行控制策略图

    Figure  2.  Diagram of operational control strategies for photovoltaic-hydropower complementary self-consistent micro-network system

    图  3  光水互补自洽微网求解流程图

    Figure  3.  Solution flow chart of photovoltaic-hydropower complementary self-consistent micro-network system

    图  4  各方案系统内各组成单元出力情况

    Figure  4.  The power output of each component within the system for each scenario.

    图  5  各方案蓄电池全年出力情况

    Figure  5.  The annual power output of the battery for each scenario.

    表  1  设备参数设置

    Table  1.   Equipment Parameter Setting

    设备名称 规格参数/kW 投资成本/(元/kW) 运维成本/(元/kW) 寿命/年
    水电机组 140 10 000 0.018 40
    光伏板 2 8 000 0.007 9 20
    柴油发电机 20 8 000 0.088 20
    蓄电池 50 3 000 0.008 5
    下载: 导出CSV

    表  2  规划方案仿真结果

    Table  2.   Simulation results of the planning scheme

    仿真结果 最优值 均值 方差
    年均成本/万元 14.60 14.48 0.77
    系统缺电率/% 0.36 0.55 0.06
    下载: 导出CSV

    表  3  3种方案下系统优化配置结果及相关指标计算结果

    Table  3.   The results of system optimization configuration and the calculation of related indicators in the three schemes

    方案编号 配置结果 年均成本/万元 投资成本/万元 运维成本/万元 系统缺电率/%
    水轮机/台 光伏板/组 柴油发电机/台 蓄电池/块
    1 2 48 2 55 14.60 11.40 3.20 0.36
    2 552 8 655 57.65 53.65 4.00 2.86
    3 2 2 55 13.07 10.32 2.77 1.95
    下载: 导出CSV
  • [1] 魏泓屹, 卓振宇, 张宁, 等. 中国电力系统碳达峰·碳中和转型路径优化与影响因素分析[J]. 电力系统自动化, 2022, 46(19): 1-12.

    WEI H Y, ZHUO Z Y, ZHANG N, et al. Transition path optimization and influencing factor analysis of carbon emission peak and carbon neutrality for power system of China[J]. Automation of Electric Power Systems, 2022, 46(19): 1-12. (in Chinese)
    [2] 李晓易, 谭晓雨, 吴睿, 等. 交通运输领域碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 15-21.

    LI X Y, TAN X Y, WU R, et al. Paths for carbon peak and carbon neutrality in transport sector in China[J]. Strategic Study of CAE, 2021, 23(6): 15-21. (in Chinese)
    [3] 马静, 徐宏璐, 马瑞辰, 等. 能源交通融合下的弹性公路能源系统发展技术要点及展望[J]. 电网技术, 2023, 47(3): 885-896.

    MA J, XU H L, MA R C, et al. A review on the development of resilient highway energy system under the integration of energy and transportation[J]. Power System Technology, 2023, 47(3): 885-896. (in Chinese)
    [4] PRINCIPE J, TAKEUCHI W. Assessment of solar PV power potential over ASIA pacific region with remote sensing considering meteorological factors[J]. Journal of Renewable and Sustainable Energy, 2019, 11(1): 13502. doi: 10.1063/1.5059335
    [5] ZHU Y M, CHEN S J, MA G W, et al. Complementary operation of a small cascade hydropower station group and photovoltaic power stations[J]. Clean Technologies and environmental Policy, 2020, 22(7): 1565-1578. doi: 10.1007/s10098-020-01896-x
    [6] 杨洋, 陈锋, 赵先富, 等. 小水电生态修复思考[J]. 人民长江, 2022, 53(7): 57-62.70

    YANG Y, CHEN F, ZHAO X F, et al. Thinking on ecological restoration of small hydropower[J]. Yangtze River, 2022, 53(7): 57-62. (in Chinese)
    [7] 贾利民, 师瑞峰, 吉莉, 等. 轨道与道路交通与能源融合发展战略研究报告—道路篇[R]. 北京: 中国工程院, 2022.

    JIA L M, SHI R F, JI L, et al. Research report on integrated development strategy of rail and road transportation and energy: road [R]. Beijing: Chinese Academy of Engineering, 2022. (in Chinese)
    [8] 于东霞, 张建华, 王晓燕, 等. 并网型风光储互补发电系统容量优化配置[J]. 电力系统及其自动化学报, 2019, 31(10): 59-65.

    YU D X, ZHANG J H, WANG X Y, et al. Optimal capacity configuration of grid-connected wind-PV-storage hybrid power generation system [J]. Proceedings of the CSU-EPSA, 2019, 31(10): 59-65. (in Chinese)
    [9] REN Y, YAO X H, LIU D, et al. Optimal design of hy dro-wind-PV multi-energy complementary systems considering smooth power output[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101832. doi: 10.1016/j.seta.2021.101832
    [10] 张歆蒴, 黄炜斌, 王峰, 等. 大型风光水混合能源互补发电系统的优化调度研究[J]. 中国农村水利水电, 2019(12): 181-185, 190.

    ZHANG X S, HUANG W B, WANG F, et al. Research on the optimal scheduling of large wind-PV-hydro hybrid energy complementary power generation system[J]. China Rural Water and Hydropower, 2019(12): 181-185, 190. (in Chinese)
    [11] 禹红, 杨明圣, 王坚, 等. 1种改进的光水互补控制策略研究[J]. 智慧电力, 2018, 46(8): 19-24.

    YU H, YANG M S, WANG J, et al. A new control strategy of light and water complement[J]. Smart Power, 2018, 46(8): 19-24. (in Chinese)
    [12] 计军恒, 冯晨, 朱燕梅. 基于源荷匹配的水光混蓄电站运行策略[J]. 中国农村水利水电, 2024, (6): 271-277.

    JI J H, FENG C, ZHU Y M. Operation policy of hybrid pumped storage and photovoltaic power station based on source-load matching[J]. China Rural Water and Hydropower, 2024, (6): 271-277. (in Chinese)
    [13] 安源, 郑申印, 苏瑞, 等. 风光水储多能互补发电系统双层优化研究[J]. 太阳能学报, 2023, 44(12): 510-517.

    AN Y, ZHENG S Y, SU R, et al. Research on two-layer optimization of wind-solar-water-storage multi-energy complementary power generation system[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 510-517. (in Chinese)
    [14] 罗仕华, 胡维昊, 黄琦, 等. 市场机制下光伏/小水电/抽水蓄能电站系统容量优化配置[J]. 电工技术学报, 2020, 35(13): 2792-2804.

    LUO S H, HU W H, HUANG Q, et al. Optimization of photovoltaic/small hydropower/pumped storage power station system sizing under the market mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2792-2804. (in Chinese)
    [15] ROHAM T, ÁLVARO G, FERNANDO MD. Electricity, transportation, and water provision of 100% renewable energy for remote areas [J]. Energies, 2023, 16(10): 4146. doi: 10.3390/en16104146
    [16] LIAO G R, YANG X J, LOU S H, et al. Multi-objective capacity planning for expressway microgrid considering photovoltaic panel dust removal maintenance[J]. Journal of Physics. Conference Series, 2023, 2588(1): 12003. doi: 10.1088/1742-6596/2588/1/012003/s41587-020-0546-8
    [17] HUANG X, JI W, YE X R, et al. Configuration planning of expressway self-consistent energy system based on multi-objective chance-constrained programming[J]. Sustainability, 2023, 15(6): 5605. doi: 10.3390/su15065605
    [18] 杨森, 张寿明. 考虑需求响应的微电网最优经济运行及改进人工蜂群算法[J/OL]. (2024-01)[2024-01-15]. Https://link.cnki.net/urlid/53.1045.n.20240103.1614.004.

    YANG S, ZHANG S M, et al. Optimal economic operation of microgrid considering demand response and improved artificial colony algorithm[J/OL]. (2024-01)[2024-01-15]. Https://link.cnki.net/urlid/53.1045.n.20240103.1614.004. (in Chinese)
    [19] ZHANG X J, PIETRO EC, BI X J, et al. Capacity configuration of a hydro-wind-solar-storage bundling system with transmission constraints of the receiving-end power grid and its techno-economic evaluation[J]. Energy Conversion and Management, 2022, 270: 116177. doi: 10.1016/j.enconman.2022.116177
    [20] 顾圣平, 田富强, 徐得潜. 水资源规划及利用[M]. 北京: 中国水利水电出版社, 2009.

    GU S P, TIAN F Q, XU D Q. Water resources planning and management[M]. Beijing: China Water & Power Press, 2009. (in Chinese)
    [21] 刘清梅, 万明, 严利鑫, 等. 基于集合经验模态分解降噪和优化LSTM的道路交通事故预测[J]. 交通信息与安全, 2023, 41(5): 12-23. doi: 10.3963/j.jssn.1674-4861.2023.05.002

    LIU Q M, WAN M, YAN L X, et al. A method for predicting traffic accidents based on an ensemble empirical mode decomposition and an optimized LSTM model[J]. Journal of Transport Information and Safety, 2023, 41(5): 12-23. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.002
    [22] YANG B W, GUO Y G, XIAO X, et al. Bi-level capacity planning of wind-PV-battery hybrid generation system considering return on investment[J]. Energies, 2020, 13(12): 3046. doi: 10.3390/en13123046
    [23] LI J H, ZHANG Z S, SHEN B X, et al. The capacity allocation method of photovoltaic and energy storage hybrid system considering the whole life cycle[J]. Journal of Cleaner Production, 2020, 275: 122902. doi: 10.1016/j.jclepro.2020.122902
    [24] ZHOU H, LU L, SHEN L, et al. Two-stage robust optimal capacity configuration of a wind, photovoltaic, hydropower, and pumped storage hybrid energy system[J]. Frontiers in Energy Research, 2023, 11: 1275232. doi: 10.3389/fenrg.2023.1275232
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  20
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-14
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回