A Bi-layer Coordinated Optimization Scheduling Method of Runway and Taxiway for Arriving and Departing Flights in Airfield Area
-
摘要: 针对大型枢纽机场飞行区跑道与滑行道调度尚未形成级联运行模式,导致跨域异质航班流无法实现有限机场容量下统筹规划及合理调度等问题,研究了飞行区进离场航班跑道和滑行道双层协同优化调度方法。在跑道调度阶段,提出考虑跑道更换成本的联合进离场多跑道调度模型,通过最小化更换跑道的无阻碍滑行时间,在保证跑道累计延误量最小的同时尽可能抑制额外产生的滑行时间。在场面滑行调度阶段,最小化航班累计总滑行时间和跑道调度期望离场时间偏差,将复杂场面航班运行的逻辑关系以及管制规则精确抽象为多元线性化约束条件,采用闭环反馈修订机制防止跑道-滑行道协同优化调度中策略不匹配问题。以成都双流国际机场和天府国际机场为实验场景进行模拟验证。仿真结果表明:相比于先到先服务策略,首次迭代单架航班平均跑道延误时间缩短16.9 s,累计航班滑行时间平均可降低14.27%;采用闭环反馈修订机制后平均能够在1.35次迭代内找到相互匹配的调度计划。同时分析了所提3类不同双层协同优化调度策略性能优劣。本文方法有助于推动建立综合化的进离场及场面协同管理技术体系,促使形成以数字驱动为核心的飞行区交通流精细化控制能力。Abstract: The runway and taxiway scheduling of large hub airports has not yet formed a cascade operation mode, leading to the inability to achieve coordinated planning and reasonable scheduling of cross-domain and heterogeneous flight flows under limited capacity of airports. This paper studies a bi-layer coordinated optimization scheduling method of runway and taxiway for arriving and departing flights in the airfield area. In the runway scheduling stage, a joint arriving and departing scheduling model of multi runways considering the cost of runway changing is proposed, which quantifies and minimizes the cost of unimpeded taxiing time for flights that change runways, and suppresses the extra taxiing time generated as far as possible while ensuring the minimum cumulative delays on runways. In the taxiway scheduling stage, a surface taxiing scheduling model is developed by minimizing the deviation between the total cumulative taxiing time of flights and the expected departure time of runway scheduling, which is used to plan the timing and sorting of arriving and departing flights at each metering point. Finally, a closed-loop mechanism of feedback-revision is adopted to prevent the mismatch in bi-layer coordinated optimization scheduling. Simulation and verification are conducted by taking Shuangliu International Airport and Tianfu International Airport in Chengdu as scenarios. The results show that runway delay time of single aircraft is reduced by 16.9 s and the cumulative flight taxiing time is reduced by 14.27% on average after the first iteration comparing to the first-come-first-served strategy, and that a matching scheduling plan can be found within 1.35 iterations on average if the closed-loop mechanism of feedback-revision is adopted. Meanwhile, the performance of 3 different types of bi-layer coordinated optimization scheduling strategies is analyzed. The method proposed in this paper is helpful to promote the technology system of comprehensive coordinated management for arrival, departure and surface, and to the formation of refined control capabilities of the airfield traffic flows with a digitally-drive core.
-
表 1 连续航班对类型尾流时间间隔
Table 1. Minimum runway separation criteria for various types of the leader-follow aircraft
单位: s 前序进场航班 后序进场航班 前序离场航班 后序离场航班 轻型 中型 大型 重型 轻型 中型 大型 重型 轻型 87 76 76 69 轻型 60 60 60 60 中型 145 101 76 69 中型 60 60 60 60 大型 145 101 101 103 大型 60 60 60 60 重型 174 127 127 103 重型 60 60 60 60 前序离场航班 后序进场航班 前序进场航班 后序离场航班 轻型 中型 大型 重型 轻型 中型 大型 重型 轻型 112 99 99 99 轻型 70 70 70 70 中型 112 99 99 99 中型 70 70 70 70 大型 112 99 99 99 大型 70 70 70 70 重型 112 99 99 99 重型 70 70 70 70 表 2 不同案例下航班计划信息
Table 2. Aircraft information for various instances
案例 航班总数/架 每种类型航班数/架 计划时间窗区间 平均架次/min 进/离场航班 轻型 中型 大型 重型 案例1 8 2 4 2 0 [60, 860] 0.60 4/4 案例2 11 1 8 1 1 [100, 780] 0.97 7/4 案例3 11 2 6 2 1 [100, 700] 1.10 4/7 案例4 14 2 8 1 3 [100, 800] 1.20 5/9 案例5 14 3 7 2 2 [100, 800] 1.20 4/10 案例6 16 3 9 1 3 [100, 800] 1.37 7/9 案例7 17 3 10 3 1 [100, 800] 1.46 7/10 案例8 17 4 7 2 3 [100, 800] 1.46 5/12 表 3 案例5航班飞行计划
Table 3. Flight plan in instance 5
航班号 航班类型 ETA/ETD 航班号 航班类型 ETA/ETD A1 中型 100 D4 中型 360 A2 大型 140 D5 轻型 420 A3 中型 320 D6 大型 560 A4 重型 400 D7 中型 630 D1 中型 130 D8 中型 700 D2 中型 180 D9 轻型 200 D3 轻型 270 D10 重型 800 表 4 ZUUU首次迭代中多跑道调度模型性能分析
Table 4. Performance analysis of multi runway scheduling model in the first iteration at ZUUU
案例 累计总延误时/s 单架航班最大延误量/s GPU计算耗时/s 离场航班累计无阻碍滑行时间/s 对比FCFS算法性能提升 CADS RCADS FCFS CADS RCADS FCFS CADS RCADS FCFS CADS RCADS FCFS CADS RCADS 提升率/% 提升率/% 1 49 0 0 49 0 0 0.23 < 0.5 < 0.5 2 580 2 160 2 160 100 100 2 129 46 46 59 21 21 0.24 2.13 1.64 1 920 1 560 1 560 64.34 64.34 3 304 51 51 90 30 30 0.24 2.28 1.70 4 500 3 060 3 060 83.22 83.22 4 457 126 126 99 60 60 0.23 13.50 12.16 6 120 4 980 4 920 72.43 72.43 5 474 108 114 126 46 46 0.23 17.84 10.02 5 280 5 280 4 260 77.22 75.95 6 1 458 149 149 216 61 61 0.23 28.89 20.44 5 760 3 840 3 840 89.78 89.78 7 565 80 80 148 47 47 0.24 22.09 17.45 5 220 4 380 4 380 85.84 85.84 8 1 217 236 236 184 94 94 0.24 233.14 113.02 7 680 6 300 6 300 74.88 74.88 表 5 ZUTF首次迭代中多跑道调度模型性能分析
Table 5. Performance analysis of multi runway scheduling model in the first iteration at ZUTF
案例 累计总延误时/s 单架航班最大延误量/s GPU计算耗时/s 离场航班累计无阻碍滑行时间/s 对比FCFS算法性能提升 CADS RCADS FCFS CADS RCADS FCFS CADS RCADS FCFS CADS RCADS FCFS CADS RCADS 提升率/% 提升率/% 1 32 0 0 32 0 0 < 0.1 0.89 0.69 1 920 1 980 1 920 100 100 2 209 0 9 89 0 9 < 0.1 12.97 7.40 2 160 2 160 1 980 100 95.63 3 99 0 0 69 0 0 < 0.1 8.42 7.91 4 740 4 080 4 080 100 100 4 95 27 57 39 27 30 < 0.1 73.41 31.76 4 380 5 520 4 200 71.58 68.42 5 208 0 60 89 0 50 < 0.1 62.28 42.83 5 820 6 420 4 920 100 71.15 6 153 30 30 57 20 20 < 0.1 52.25 38.32 4 800 4 920 4 560 80.39 80.39 7 273 0 0 90 0 0 < 0.1 170.28 116.31 5 820 5 820 5 820 100 100 8 113 30 40 57 10 30 < 0.1 162.05 111.31 6 660 5 700 5 580 73.45 64.60 表 6 ASM调度与RCADS跑道调度平均离场调度时间偏差
Table 6. Average departure scheduling time deviation between ASM scheduling and RCADS runway scheduling
单位: s 案例 ZUUU ZUTF 案例 ZUUU ZUTF 案例1 0 5.0 案例5 16.4 2.2 案例2 0 14.0 案例6 0 22.0 案例3 16 3.5 案例7 10.2 2.0 案例4 28 8.7 案例8 11.9 4.4 表 7 协同跑道和滑行道级联优化策略
Table 7. Coordinated optimization scheduling of runway and taxiway
策略 名称 定义 A FCFS-ASM(FCFS) 跑道调度采用FCFS策略,路径规划采用ASM。迭代反馈时跑道调度采用FCFS策略 B RCADS-ASM(FCFS) 跑道调度采用RCADS策略,路径规划采用ASM。迭代反馈时跑道调度采用FCFS策略 C RCADS-ASM(RCADS) 跑道调度采用RCADS策略,路径规划采用ASM。迭代反馈时跑道调度采用RCADS策略 表 8 ZUUU级联双层协同优化调度有效性分析(标称滑行路径)
Table 8. Effectiveness analysis of ZUUU double-layer collaborative optimization scheduling (nominal path)
案例 优化策略 累计跑道延误时间/s 离场航班停机位等待/s 累计滑行时间/s 离场航班累计滑行时间/s 进场航班累计滑行时间/s 额外迭代次数/次 额外迭代平均跑道调度耗时/s 额外迭代平均场面调度耗时/s A 49 585 5 112 1 995 3 117 0 1 B 0 889 4 808 1 691 3 117 0 C 0 889 4 808 1 691 3 117 0 A 129 338 7 131 1 582 5 549 0 2 B 46 560 6 909 1 360 5 549 0 C 46 560 6 909 1 360 5 549 0 A 870 1 054 6 583 3 938 2 645 2 < 0.1 < 0.1 3 B 163 1 980 5 307 2 662 2 645 1 < 0.1 < 0.1 C 163 1 980 5 307 2 662 2 645 1 1.97 < 0.1 A 1 889 833 10 600 6 470 4 130 2 < 0.1 0.10 4 B 500 2 212 8 611 4 286 4 325 1 < 0.1 < 0.1 C 385 2 907 7 727 3 598 4 129 2 5.39 0.11 A 692 1 193 7 330 4 685 2 645 2 < 0.1 < 0.1 5 B 278 1 896 6 392 3 662 2 730 1 < 0.1 < 0.1 C 278 1 896 6 392 3 662 2 730 1 5.97 0.10 A 2 706 1 292 11 037 5 665 5 372 1 < 0.1 < 0.1 6 B 149 2 721 8 085 3 089 4 996 0 C 149 2 721 8 085 3 089 4 996 0 A 749 1 266 10 003 4 342 5 661 1 < 0.1 0.17 7 B 182 1 616 9 368 3 706 5 662 2 < 0.1 0.14 C 182 1 616 9 368 3 706 5 662 2 13.08 0.14 A 2 657 1 959 11 305 7 417 3 888 1 < 0.1 < 0.1 8 B 443 2 370 9 608 5 717 3 891 2 < 0.1 < 0.1 C 445 3 060 8 916 5 025 3 891 2 14.53 < 0.1 表 9 ZUTF级联双层协同优化调度有效性分析(标称滑行路径)
Table 9. Effectiveness analysis of ZUTF double-layer collaborative optimization scheduling (nominal path)
案例 优化策略 累计跑道延误时间/s 离场航班停机位等待/s 累计滑行时间/s 离场航班累计滑行时间/s 进场航班累计滑行时间/s 额外迭代次数/次 额外迭代平均跑道调度耗时/s 额外迭代平均场面调度耗时/s A 52 138 3 214 1 802 1 412 1 < 0.1 < 0.1 1 B 20 138 3 214 1 802 1 412 1 < 0.1 < 0.1 C 20 138 3 214 1 802 1 412 1 0.58 < 0.1 A 460 254 4 713 2 137 2 576 2 < 0.1 < 0.1 2 B 9 1 120 3 567 1 040 2 527 0 C 9 1 120 3 567 1 040 2 527 0 A 99 684 6 165 4 086 2 079 0 3 B 25 1 226 5 618 3 539 2 079 1 < 0.1 < 0.1 C 25 1 226 5 618 3 539 2 079 1 6.47 < 0.1 A 233 709 5 749 3 789 1 960 2 < 0.1 < 0.1 4 B 135 775 5 673 3 713 1 960 2 < 0.1 < 0.1 C 135 775 5 673 3 713 1 960 2 21.88 < 0.1 A 291 892 6 706 5 049 1 657 2 < 0.1 < 0.1 5 B 82 1 806 5 753 4 096 1 657 2 < 0.1 < 0.1 C 82 1 806 5 753 4 096 1 657 2 14.13 < 0.1 A 344 600 6 431 4 471 1 960 3 < 0.1 0.13 6 B 228 608 6 380 4 420 1 960 3 < 0.1 0.14 C 228 608 6 380 4 420 1 960 3 11.21 0.14 A 293 1 095 6 885 4 845 2 040 1 < 0.1 < 0.1 7 B 39 1 005 6 885 4 845 2 040 1 < 0.1 < 0.1 C 39 1 005 6 885 4 845 2 040 1 31.14 < 0.1 A 169 1 082 7 694 5 734 1 960 4 < 0.1 0.12 8 B 93 1 836 6 937 4 977 1 960 3 < 0.1 0.13 C 93 1 836 6 937 4 977 1 960 3 21.58 0.13 -
[1] 尹嘉男, 马园园, 胡明华. 机场飞行区资源调度问题研究(一): 基本概念与框架[J]. 航空工程进展, 2019, 10 (3): 289-301.YIN J N, MA Y Y, HU M H. The Airfield resource scheduling problem - part Ⅰ: basic concepts and framework[J]. Aviation Engineering Progress, 2019, 10(3): 289-301. (in Chinese) [2] BO X, WEIMIN M, HUA K, et al. An efficient ant colony algorithm based on rank 2 matrix approximation method for aircraft arrival departure scheduling problem[J]. Processes, 2022, 10 (9): 1825-1825. doi: 10.3390/pr10091825 [3] 姜雨, 王欢, 樊卫国, 等. 场面航空器滑行时空协同优化模型[J]. 交通运输工程学报, 2019, 19 (1): 127-135.JIANG Y, WANG H, FAN W G, et al. Spatio - temporary cooperative optimization model of surface aircraft taxiing[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 127-135. (in Chinese) [4] JIANG H, LIU J, ZHOU W. Bi-level programming model for joint scheduling of arrival and departure flights Based on traffic scenario[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(4): 671-684. [5] 中国民用航空局. 智慧民航建设路线图[R]. 北京: 中国民用航空局, 2022.Civil Aviation Administration of China. Roadmap for smart civil aviation construction[R]. Beijing: Civil Aviation Administration of China, 2022. (in Chinese) [6] 王宁, 翟文鹏. 基于点融合的多跑道进场航班排序[J]. 交通信息与安全, 2021, 39 (6): 108-116. doi: 10.3963/j.jssn.1674-4861.2021.06.013WANG N, ZHAI W P. Multi runway approach flight sorting based on point fusion[J]. Journal of Transport Information and Safety, 2021, 39(6): 108-116. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.06.013 [7] 张军峰, 游录宝, 杨春苇, 等. 基于多目标帝国竞争算法的进场排序与调度[J]. 航空学报, 2021, 42 (6): 475-487.ZHANG J F, YOU L B, YANG C W, et al. Arrival sequencing and scheduling based on multi-objective imperialist competitive algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (2): 475-487. (in Chinese) [8] 张凤, 汤晓鹏, 刘兵飞. 机场飞行区无人驾驶清水车优化调度方法[J]. 交通信息与安全, 2022, 40 (2): 82-90. doi: 10.3963/j.jssn.1674-4861.2022.02.010ZHANG F, TANG X P, LIU B F. An optimization method for scheduling autonomous potable water service vehicles at airfields[J]. Journal of Transport Information and Safety, 2022, 40(2): 82-90. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.010 [9] GING A, ENGELLAND S, CAPPS A, et al. Airspace technology demonstration 2 (atd-2) technology description document (tdd)[R]. Washington, D.C. National Aeronautics and Space Administration, 2018. [10] PARKE B K, STEVENS L K S, COUPE W J, et al. Alternatives for scheduling departures for efficient surface metering in ATD-2: exploration in a human-in-the-loop simulation[C]. International Conference on Applied Human Factors and Ergonomics, Cham: Springer, 2019. [11] 尹嘉男, 马园园, 胡明华. 机场飞行区资源调度问题研究(三): 研究热点与挑战[J]. 航空工程进展, 2019, 10 (5): 577-586.YIN J N, MA Y Y, HU M H. The airfield resource scheduling problem - part Ⅲ: research hot-spots and challenges[J]. Aviation Engineering Progress, 2019, 10(5): 577-586. (in Chinese) [12] 侯昌波, 夏朝禹, 田文, 等. 机场群一体化运行: 集成进离场与场面运行技术研究综述[J]. 科学技术与工程, 2023, 23 (12): 4943-4957.HOU C B, XIA C Y, TIAN W, et al. Integrated operation of metroplex: a review of integrated arrival and departure and surface operations technology[J]. Science and Technology and Engineering, 2023, 23(12): 4943-4957. (in Chinese) [13] 陈飞飞, 王敏. 进离场管理系统一体化运行技术研究[J]. 信息化研究, 2017, 43 (5): 46-49.CHEN F F, WANG M. Research on integrated operation technology of entry and exit management system[J]. Journal of Information Technology Research, 2017, 43(5): 46-49. (in Chinese) [14] wieland f, tyagi a, kumar v, et al. metrosim: a metroplex wide route planning and airport scheduling yool[C]. AIAA Aviation Technology, Integration, & Operations Conference, Shanghai: AIAA, 2014. [15] 姜雨, 刘振宇, 胡志韬, 等. 大型机场进场航空器联合调度模型[J]. 交通运输工程学报, 2022, 22 (1): 205-215.JIANG Y, LIU ZY, HU Z T, et al. Coordinated scheduling, model loss, arriving aircraft at large airport[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 205-215. (in Chinese) [16] EUN Y, JEON D, LEE H, et al. Optimization of airport surface traffic: a case-study of Incheon international airport[C]. 17th AIAA Aviation Technology, Integration, and Operations Conference, Reston: AIAA, 2017. [17] MA J, DELAHAYE D, SBIHI M, et al. Integrated optimization of arrival, departure, and surface operations[C]. 8th International Conference for Research in Air Transportation, Reston: FederalAviationAdministration, 2018. [18] BOSSON C, XUE M, ZELINSKI S. Optimizing integrated arrival, departure and surface operations under uncertainty[C]. Air Traffic Management Research and Development Seminar, Lisbon : AIAA, 2015. [19] XIA C Y, WU Z Y, YANG C R, et al. Combining arrival-departure scheduling with runway configuration mode switches[C]. 2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology, Dali: IEEE, 2024. [20] 江灏, 刘继新. 进离场航班优化调度研究综述[J]. 航空计算技术, 2021, 51 (4): 130-134.JIANG H, LIU J X. Survey review of arrival and departure flight optimal scheduling[J]. Aeronautical Computing Technique, 2021, 51(4): 130-134. (in Chinese) -