留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自然驾驶轨迹数据的城市快速路小型车辆换道特性分析

李阳钊 陈海华 黄申春 曹光 曹博 梁之遥 雷剑 贺宜

李阳钊, 陈海华, 黄申春, 曹光, 曹博, 梁之遥, 雷剑, 贺宜. 基于自然驾驶轨迹数据的城市快速路小型车辆换道特性分析[J]. 交通信息与安全, 2024, 42(5): 33-41. doi: 10.3963/j.jssn.1674-4861.2024.05.004
引用本文: 李阳钊, 陈海华, 黄申春, 曹光, 曹博, 梁之遥, 雷剑, 贺宜. 基于自然驾驶轨迹数据的城市快速路小型车辆换道特性分析[J]. 交通信息与安全, 2024, 42(5): 33-41. doi: 10.3963/j.jssn.1674-4861.2024.05.004
LI Yangzhao, CHEN Haihua, HUANG Shenchun, CAO Guang, CAO Bo, LIANG Zhiyao, LEI Jian, HE Yi. Analysis of Small Vehicle Lane-Changing Characteristics of Urban Expressway Based on Naturalistic Driving Trajectory Data[J]. Journal of Transport Information and Safety, 2024, 42(5): 33-41. doi: 10.3963/j.jssn.1674-4861.2024.05.004
Citation: LI Yangzhao, CHEN Haihua, HUANG Shenchun, CAO Guang, CAO Bo, LIANG Zhiyao, LEI Jian, HE Yi. Analysis of Small Vehicle Lane-Changing Characteristics of Urban Expressway Based on Naturalistic Driving Trajectory Data[J]. Journal of Transport Information and Safety, 2024, 42(5): 33-41. doi: 10.3963/j.jssn.1674-4861.2024.05.004

基于自然驾驶轨迹数据的城市快速路小型车辆换道特性分析

doi: 10.3963/j.jssn.1674-4861.2024.05.004
基金项目: 

国家自然科学基金项目 52322217

国家自然科学基金项目 52072292

详细信息
    作者简介:

    李阳钊(1999—),博士研究生. 研究方向:自动驾驶决策与控制. E-mail: 319821@whut.edu.cn

    通讯作者:

    陈海华(1978—),硕士,高级工程师. 研究方向:交通流量预测与调度. E-mail: 11198510@qq.com

  • 中图分类号: U491.5+4

Analysis of Small Vehicle Lane-Changing Characteristics of Urban Expressway Based on Naturalistic Driving Trajectory Data

  • 摘要: 跟驰和换道是交通流理论重要的研究方向,换道行为涉及因素较跟驰行为更为复杂。当前基于国外公开轨迹数据集的换道特性分析很难涵盖符合中国驾驶人特性的换道行为特性,同时国内外数据集采集来源多集中在高速公路上,未考虑不同道路类型对换道行为特性的影响。为研究中国典型城市道路车辆换道行为特性,采用无人机对武汉城市快速路直行路段交通流进行拍摄,获取符合中国城市道路特性与驾驶人特性的自然驾驶数据,并对数据集进行换道识别与参数提取,在此基础上进行了换道行为特性分析。无人机所采集视频包含小型车辆8 609辆,依据车辆所在车道编号是否发生变化以及变化次数作为换道车辆识别标准,共提取6 897辆跟驰车辆轨迹数据(车辆所在车道编号无变化)以及1 712辆单次换道车辆轨迹数据(车辆所在车道编号仅发生一次变化)。基于所提取跟驰车辆轨迹数据获取道路交通流平均速度与车辆平均跟车间距等指标,从而对交通流实时运行状态进行分析;基于所提取的车辆单次换道轨迹数据,采用固定时间窗口作为判断换道起终点的依据,在此基础上获取车辆换道纵向位移与换道启动时与周边车的时距,并结合交通流实时运行状态进行换道行为安全分析。通过对所获取的跟驰与换道交通特征参数进行分布拟合与统计分析,结果显示道路交通流速度均值为19.257 1 m/s,车辆跟车间距均值为45.910 7 m,车辆换道纵向位移均值为115.515 m,车辆换道启动时与周边车时距分布均符合对数正态分布。其中换道车辆与目标车道前车时距均值显著高于初始车道前车时距均值。同时发现,在与目标车道后车时距较小时,仍有一部分驾驶人选择换道,这体现了部分驾驶人激进的驾驶行驶。本研究可为分析中国城市快速路上的换道特性以及开发适用于中国交通特点的换道行为模型提供参考。

     

  • 图  1  典型换道场景

    Figure  1.  Typical lane change scenario

    图  2  路段卫星图

    Figure  2.  Satellite view of the road section

    图  3  跟驰车辆平均速度统计与拟合

    Figure  3.  Average speed statistics and fitting of following vehicles

    图  4  跟驰车辆平均间距统计与拟合

    Figure  4.  Statistics and fitting of average distance between following vehicles

    图  5  换道纵向位移统计与拟合

    Figure  5.  Longitudinal displacement statistics and fitting for lane change

    图  6  换道启动时EV与IPV时距统计与拟合

    Figure  6.  Statistics and fitting of EV and IPV time distance at lane change initiation

    图  7  换道启动时EV与TPV时距统计与拟合

    Figure  7.  Statistics and fitting of EV and TPV time distance at lane change initiation

    图  8  换道启动时EV与TFV时距统计与拟合

    Figure  8.  Statistics and fitting of EV and TFV time distance at lane change initiation

    表  1  数据说明

    Table  1.   Data description

    数据集名称 道路类型
    03 单向4车道(含匝道)
    04 双向6车道
    05 双向7车道
    06 双向7车道
    08 双向8车道
    09 双向8车道
    下载: 导出CSV

    表  2  换道率统计

    Table  2.   Switching rate statistics

    数据集 样本量 单次换道 跟驰 换道率/%
    03 487 93 394 19.10
    04 1 452 189 1 263 13.02
    05 2 104 497 1 607 23.62
    06 2 181 505 1 676 23.15
    08 1 241 246 995 19.82
    09 1 144 182 962 15.91
    下载: 导出CSV

    表  3  相关特征参数描述

    Table  3.   Description of relevant characteristic parameters

    特征参数 描述
    DHW 前车跟驰时距
    XCL 换道的纵向距离长度
    下载: 导出CSV

    表  4  跟驰车辆平均速度拟合结果

    Table  4.   Fitting results of average speed of following vehicles

    分布参数 均值 方差 对数似然值
    正态分布 19.257 1 4.554 8 -6 371.68
    对数正态分布 19.260 7 4.945 7 -6 463.08
    下载: 导出CSV

    表  5  跟驰车辆平均间距拟合结果

    Table  5.   Fitting results of average distance between following vehicles

    分布参数 均值 方差 对数似然值
    正态分布 45.261 1 478.214 -33 009.1
    对数正态分布 45.910 7 611.924 -32 501.6
    下载: 导出CSV

    表  6  换道纵向位移拟合结果

    Table  6.   Longitudinal displacement fitting results for lane change

    分布参数 均值 方差 对数似然值
    正态分布 115.515 494.296 -4 420.55
    对数正态分布 115.604 557.605 -4 449.47
    下载: 导出CSV

    表  7  换道纵向位移均值对比

    Table  7.   Comparison of mean values of longitudinal displacements for lane change

    编号 作者 均值 道路类型
    1 本文 115.515 城市快速道路
    2 马小龙等[6] 148.08 环城高速公路
    下载: 导出CSV

    表  8  换道启动时EV与IPV时距拟合结果

    Table  8.   Fitting results of EV and IPV time distance at lane change initiation

    分布参数 均值 方差 对数似然值
    正态分布 31.436 9 1 739.57 -3 341.61
    对数正态分布 28.904 9 901.271 -2 764.83
    下载: 导出CSV

    表  9  换道启动时EV与TPV时距拟合结果

    Table  9.   EV and TPV time-distance fitting results at lane change initiation

    分布参数 均值 方差 对数似然值
    正态分布 50.685 9 1 996.08 -1 658.95
    对数正态分布 50.112 1 930.8 -1 515.49
    下载: 导出CSV

    表  10  换道启动时EV与TFV时距拟合结果

    Table  10.   Results of fitting EV to TFV time distance at lane change initiation

    分布参数 均值 方差 对数似然值
    正态分布 34.438 5 1 929.61 -862.945
    对数正态分布 32.639 9 1 521.91 -730.072
    下载: 导出CSV
  • [1] ELLIOTT D, KEEN W, MIAO L. Recent advances in connected and automated vehicles[J]. Journal of Traffic and Transportation Engineering, 2019, 6 (2): 109-131.
    [2] ZHENG Z. Recent developments and research needs in modeling lane changing[J]. Transportation Research Part B: Methodological, 2014, 60: 16-32. doi: 10.1016/j.trb.2013.11.009
    [3] ALI Y, ZHENG Z, HAQUE M M, et al. A game theory-based approach for modelling mandatory lane-changing behaviour in a connected environment[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 220-242. doi: 10.1016/j.trc.2019.07.011
    [4] HANG P, LYU C, XING Y, et al. Human-like decision making for autonomous driving: a noncooperative game theoretic approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (4): 2076-2087.
    [5] KLITZKEL, KOCHC, KÖSTERF. Identification of lane-change maneuvers in real-world drivings with hidden markov model and dynamic time warping[C]. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems(ITSC), Rhodes: IEEE, 2020.
    [6] 马小龙, 余强, 刘建蓓, 等. 基于无人机视频拍摄的高速公路小型车换道行为特性[J]. 中国公路学报, 2020, 33(6): 95-105.

    MA X L, YU Q, LIU J b, et al. Behavioral characteristics of highway mini-vehicle lane changing based on UAV video filming[J]. China Journal of Highway and Transport, 2020, 33 (6): 95-105. (in Chinese)
    [7] TIJERINA L, GARROTT W R, Glecker M, et al. Van and passenger car driver eye glance behavior during lane change decision phase, interim report[J]. Transportation Research Record, 2005, 1937 (1), 37-43. doi: 10.1177/0361198105193700106
    [8] HE Y, WANG P, CHAN C Y. Understanding lane change behavior under dynamic driving environment based on real-world traffic dataset[C]. 5th International Conference on Transportation Information and Safety(ICTIS), Liverpool: IEEE, 2019.
    [9] BEHRISCH M, BIEKER L, ERDMANN J, et al. SUMO-simulation of urban mobility: an overview[C]. The Third International Conference on Advances in System Simulation, Barcelona: ThinkMind, 2011.
    [10] 张可琨, 曲大义, 宋慧, 等. 自动驾驶汽车换道决策行为分析及分子相互作用势建模[J]. 青岛理工大学学报, 2023, 44 (5): 150-159.

    ZHANG K K, QU D Y, SONG HUI, et al. Behavioral analysis and molecular interaction potential modeling of lane-changing decision for self-driving cars[J]. Journal of Qingdao University of Technology, 2023, 44(5): 150-159. (in Chinese)
    [11] 张俊杰, 马永锋, 陈淑燕, 等. 高速公路施工区车队被动换道行为建模与仿真[J]. 浙江大学学报(工学版), 2024, 58 (2): 381-387.

    ZHANG J J, MA Y F, CHEN S Y, et al. Modeling and simulation of passive lane-changing behavior of convoys in highway construction zones[J]. Journal of Zhejiang University (Engineering Edition), 2024, 58 (2): 381-387. (in Chinese)
    [12] FURDA A, VLACIC L. Enabling safe autonomous driving in real-world city traffic using multiple criteria decision making[J]. IEEE Intelligent Transportation Systems Magazine, 2011, 3 (1): 4-17. doi: 10.1109/MITS.2011.940472
    [13] XU X, ZUO L, LI X, et al. A reinforcement learning approach to autonomous decision making of intelligent vehicles on highways[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50 (10): 3884-3897.
    [14] WANG Q, LI Z, LI L. Investigation of discretionary lane-change characteristics using next-generation simulation data sets[J]. Journal of Intelligent Transportation Systems, 2014, 18(3): 246-253. doi: 10.1080/15472450.2013.810994
    [15] 王畅, 宋定波, 付锐, 等. 大型营运客车在高速公路的换道安全性辨识[J]. 中国公路学报, 2018, 31 (9): 229-238.

    WANG C, SONG D B, FU R, et al. Safety identification of large operating buses changing lanes on highways[J]. China Journal of Highway and Transport, 2018, 31(9): 229-238. (in Chinese)
    [16] YANG M, WANG X, QUDDUS M. Examining lane change gap acceptance, duration and impact using naturalistic driving data[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 317-331. doi: 10.1016/j.trc.2019.05.024
    [17] ANTIN J F, LEE S, PEREZ M A, et al. Second strategic highway research program naturalistic driving study methods[J]. Safety Science, 2019, 119: 2-10. doi: 10.1016/j.ssci.2019.01.016
    [18] ALI Y, ZHENG Z, HAQUE M M, ET AL. DETECTING, ANALYSING, AND MODELLING FAILED LANE-CHANGing attempts in traditional and connected environments[J]. Analytic Methods in Accident Research, 2020, 28: 100138. doi: 10.1016/j.amar.2020.100138
    [19] SHAO H, ZHANG M, FENG T, et al. A discretionary lane-changing decision-making mechanism incorporating drivers' heterogeneity: a signaling game-based approach[J]. Journal of Advanced Transportation, 2020, 2020: 1-16.
    [20] LI Z L, HUANG X H, WANG J, et al. Lane change behavior research based on NGSIM vehicle trajectory data[C]. 2020 Chinese Control and Decision Conference(CCDC), Hefei: IEEE, 2020.
    [21] HE Y, CAO B, CHAN C Y. WUT-NGSIM: a high-precision and trustworthy vehicle trajectory dataset[R/OL]. (2023-05-06)[2024-03-01]. https://ieee-dataport.org/documents/wut-ngsim-high-precision-and-trustworthy-vehicle-trajectory-dataset.
  • 加载中
图(8) / 表(10)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  58
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-04
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回