留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于智能网联车的高速公路移动瓶颈实时检测方法

李凯 孙佳 陈非 唐颜东 曹鹏

李凯, 孙佳, 陈非, 唐颜东, 曹鹏. 基于智能网联车的高速公路移动瓶颈实时检测方法[J]. 交通信息与安全, 2024, 42(5): 24-32. doi: 10.3963/j.jssn.1674-4861.2024.05.003
引用本文: 李凯, 孙佳, 陈非, 唐颜东, 曹鹏. 基于智能网联车的高速公路移动瓶颈实时检测方法[J]. 交通信息与安全, 2024, 42(5): 24-32. doi: 10.3963/j.jssn.1674-4861.2024.05.003
LI Kai, SUN Jia, CHEN Fei, TANG Yandong, CAO Peng. A Method for Real-time Detecting Freeway Moving Bottlenecks Using Intelligent Connected Vehicles[J]. Journal of Transport Information and Safety, 2024, 42(5): 24-32. doi: 10.3963/j.jssn.1674-4861.2024.05.003
Citation: LI Kai, SUN Jia, CHEN Fei, TANG Yandong, CAO Peng. A Method for Real-time Detecting Freeway Moving Bottlenecks Using Intelligent Connected Vehicles[J]. Journal of Transport Information and Safety, 2024, 42(5): 24-32. doi: 10.3963/j.jssn.1674-4861.2024.05.003

基于智能网联车的高速公路移动瓶颈实时检测方法

doi: 10.3963/j.jssn.1674-4861.2024.05.003
基金项目: 

国家自然科学基金项目 61903313

国家自然科学基金项目 52172395

详细信息
    作者简介:

    李凯(1979—),高级工程师. 研究方向:智慧交通与交通信息化. E-mail:4760010@qq.com

    通讯作者:

    曹鹏(1988—),博士,副教授. 研究方向:智能交通系统. E-mail:caopeng@swjtu.edu.cn

  • 中图分类号: U491.2

A Method for Real-time Detecting Freeway Moving Bottlenecks Using Intelligent Connected Vehicles

  • 摘要: 针对基于定点的检测方法无法有效监测移动瓶颈的形成及演变态势问题,研究了1种基于智能网联车的高速公路移动瓶颈实时检测方法。结合智能车轨迹数据特性,提出基于小波分析的轨迹降噪方法。基于轨迹形态与交通状态之间的关系,识别智能车轨迹中体现交通状态突变的关键点。由于同1个时刻路段上存在多个交通拥堵,为确定关键点所属交通波,提出基于交通波时空分布特性的关键点分类算法。基于关键点计算交通波波速并估算排队长度,以对识别的移动瓶颈进行评价。基于SUMO仿真平台,以沪嘉高速为对象,对各种智能车占比下移动瓶颈位置和传播速度的检测效果以及排队延误情况开展了试验。结果表明:当高速路上智能车渗透率小于10%,轨迹降噪所带来交通波波速估计精度平均提升20%;当渗透率超过3%,对移动瓶颈传播速度的估计误差在0.42 m/s以下;当渗透率达到7%,移动瓶颈位置估计偏差大多在10 m以内,不超过25 m。本文方法可以实时地检测高速路上随机突发的移动瓶颈并评价其严重程度。

     

  • 图  1  移动瓶颈示意图

    Figure  1.  Diagram of a moving bottleneck

    图  2  左、右车道内所有车辆的完整轨迹

    Figure  2.  Complete trajectories of all vehicles in the left and right lanes

    图  3  实时算法流程图

    Figure  3.  Flowchart of real-time algorithm

    图  4  关键点与交通波的对应关系

    Figure  4.  Correspondence between turning points and traffic shockwaves

    图  5  全样本轨迹热力图

    Figure  5.  Heatmap of full-sample vehicle trajectories

    图  6  智能车数据采集系统的系统架构

    Figure  6.  System framework of intelligent connected vehicle data acquisition system

    图  7  降噪前后交通波速度估计结果

    Figure  7.  Estimation results of traffic shockwave speed before and after denoising

    图  8  车辆排队延误估计相对偏差

    Figure  8.  Relative deviation of estimated vehicle queue delay

    图  9  移动瓶颈检测计算用时

    Figure  9.  Computing time for moving bottleneck detection

    表  1  高速公路上的车型组成及车辆参数

    Table  1.   Vehicle composition and vehicle parameters on freeways

    车辆类型 车长/m 车宽/m 比例
    小客车 5 1.8 0.66
    中客车 6 2 0.15
    大客车 12 2.5 0.07
    轻型货车 5.7 2 0.04
    中型货车 7 2.5 0.08
    下载: 导出CSV

    表  2  参数说明及取值

    Table  2.   Parameter description and values

    参数 参数说明 取值 参数 参数说明 取值
    Dmin /m 判断属于同一交通波的2个关键点之间的最小空间间隔 30 Tmin/(m/s) 判断属于同一交通波的2个关键点之间的最小时间间隔 2
    slope_ min/(m/s) 移动瓶颈传播速度范围的下限 3 slop_ max/(m/s) 移动瓶颈传播速度范围的上限 19
    Dmax /m 判断属于同一交通波的2个关键点之间的最大空间间隔 1 000 Tmax /s 判断属于同一交通波的2个关键点之间的最大时间间隔 165
    Drea /m 判断属于同一交通波的2个关键点之间的合理空间间隔 200 Trea /s 判断属于同一交通波的2个关键点之间的合理时间间隔 14s
    下载: 导出CSV

    表  3  交通波波速估计结果

    Table  3.   Results of traffic shockwave speed estimation

    波速类型 智能车渗透率/% 左车道交通波1速度/(m/s) 左车道交通波2速度/(m/s) 左车道交通波3速度/(m/s) 左车道估计波速的RMSE/(m/s) 右车道交通波1速度/(m/s) 右车道交通波1速度/(m/s) 右车道估计波速的RMSE/(m/s)
    真实波速 0 7.87 -4.20 4.74 -4.86 4.64
    估计波速 1 -6.54 3.00 2.06 3.40 1.24
    估计波速 3 7.45 -6.25 3.65 1.36 -5.68 3.58 0.95
    估计波速 5 8.10 -6.14 4.59 1.13 -6.13 4.73 0.90
    估计波速 7 7.86 -5.72 5.29 0.93 -5.97 4.64 0.78
    估计波速 9 7.86 -5.66 4.09 0.92 -5.78 4.97 0.70
    估计波速 20 7.86 -5.62 4.70 0.82 -5.47 4.49 0.44
    估计波速 50 7.68 -5.26 4.94 0.63 -5.09 4.94 0.27
    估计波速 100 7.82 -5.04 4.69 0.49 -5.09 4.64 0.16
    下载: 导出CSV

    表  4  智能车渗透率7%下移动瓶颈位置的实时检测结果

    Table  4.   Results of real-time detecting moving bottlenecks under 7% penetration rate of intelligent connected vehicles

    关键点序号 时刻/s 真实位置/m 估计位置/m 估计误差/m
    1 187.6 1 586.97 1 589.60 2.63
    2 200.0 1 703.62 1 688.80 -14.82
    3 201.8 1 704.89 1 703.20 -1.69
    4 204.6 1 736.90 1 725.60 -11.3
    5 210.8 1 786.11 1 775.20 -10.91
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    91 690.7 5 604.70 5 614.40 9.7
    92 691.4 5 596.39 5 620.00 23.61
    93 697.8 5 667.35 5 671.20 3.85
    94 699.0 5 667.11 5 680.80 13.69
    下载: 导出CSV
  • [1] 杨晓芳, 付强. 移动瓶颈理论研究进展[J]. 计算机工程与应用, 2011, 47 (5): 1-3, 23.

    YANG X F, FU Q. Development of moving bottleneck theory[J]. Computer Engineering and Applications, 2011, 47(5): 1-3, 23. (in Chinese)
    [2] NEWELL G F. A moving bottleneck[J]. Transportation Research Part B: Methodological, 1998, 32 (8): 531-537. doi: 10.1016/S0191-2615(98)00007-1
    [3] 范翘楚, 曹鹏. 基于无人驾驶车数据的快速路排队长度实时检测方法[J]. 综合运输, 2019, 41 (2): 54-59.

    FAN Q C, CAO P. Real-time queue length detection method of expressway based on autonomous vehicles data[J]. China Transportation Review, 2019, 41 (2): 54-59. (in Chinese)
    [4] 董礼. 移动瓶颈下高速公路交通拥堵传播及控制策略研究[D]. 兰州: 兰州交通大学, 2019.

    DONG L. Research on the propagation and control strategy of expressway traffic congestion under mobile bottleneck[D]. Lanzhou: Lanzhou Jiaotong University, 2019. (in Chinese)
    [5] GAZIS D C, HERMAN R. The moving and"phantom"bottlenecks[J]. Transportation Science, 1992, 26 (3): 223-229. doi: 10.1287/trsc.26.3.223
    [6] DAGANZO C F, LAVAL J A. On the numerical treatment of moving bottlenecks[J]. Transportation Research Part B: Methodological, 2005, 39 (1): 31-46. doi: 10.1016/j.trb.2004.02.003
    [7] DAGANZO C F, LAVAL J A. Moving bottlenecks: a numerical method that converges in flows[J]. Transportation Research Part B: Methodological, 2005, 39 (9): 855-863. doi: 10.1016/j.trb.2004.10.004
    [8] MUNOZ J C, DAGANZO C F. Moving bottlenecks: a theory grounded on experimental observation[C]. Transportation and Traffic Theory in the 21st Century. Bingley: Emerald Group Publishing Limited, 2002.
    [9] DAGANZO C F. A behavioral theory of multi-lane traffic flow. Part Ⅰ: long homogeneous freeway sections[J]. Transportation Research Part B: Methodological, 2002, 36 (2): 131-158. doi: 10.1016/S0191-2615(00)00042-4
    [10] WEGERLE D, KERNER B S, SCHRECKENBERG M, et al. Prediction of moving bottleneck through the use of probe vehicles: a simulation approach in the framework of three-phase traffic theory[J]. Journal of Intelligent Transportation Systems, 2020, 24 (6): 598-616. doi: 10.1080/15472450.2019.1652825
    [11] 郝威, 梁聪, 张兆磊, 等. 车路协同下避让紧急车辆协同换道策略[J]. 交通信息与安全, 2022, 40 (4): 92-100. doi: 10.3963/j.jssn.1674-4861.2022.04.010

    HAO W, LIANG C, ZHANG Z L et al. A cooperative lane changing strategy to give way to emergency vehicles with the cooperative vehicle infrastructure system[J]. Journal of Transport Information and Safety, 2022, 40(4): 92-100. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.010
    [12] YAO W, ZENG Q Q, LIN Y P et al. On-road vehicle trajectory collection and scene-based lane change analysis: Part Ⅱ[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18 (1): 206-220. doi: 10.1109/TITS.2016.2571724
    [13] CAO P, FAN Q C, LIU X B. Real-time detection of end-of-queue shockwaves on freeways using probe vehicles with spacing equipment[J]. IET Intelligent Transport Systems, 2018, 12 (10): 1227-1235. doi: 10.1049/iet-its.2018.5124
    [14] 范翘楚. 基于自动驾驶车数据的高速路排队检测研究[D]. 成都: 西南交通大学, 2019.

    FAN Q C. Research on highway queuing detection based on autonomous vehicle data[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [15] KERNER B S, KLENOV S L. A theory of traffic congestion at moving bottlenecks[J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43: 425101. doi: 10.1088/1751-8113/43/42/425101
    [16] 许庆, 王嘉伟, 王建强, 等. 网联通信时延下的混合队列控制特性分析[J]. 交通信息与安全, 2021, 39 (1): 128-136. doi: 10.3963/j.jssn.1674-4861.2021.01.015

    XU Q, WANG J W, WANG J Q et al. A performance analysis of mixed platoon control under communication delay[J]. Journal of Transport Information and Safety, 2021, 39(1): 128-136. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.01.015
    [17] FARD M R, MOHAYMANY A S, SHAHRI M. A new methodology for vehicle trajectory reconstruction based on wavelet analysis[J]. Transportation Research Part C: Emerging Technologies, 2017, (74): 150-167.
    [18] MONTANINO M, PUNZO V. Making NGSIM data usable for studies on traffic flow theory: multistep method for vehicle trajectory reconstruction[J]. Transportation Research Record, 2013, 2390 (1): 99-111. doi: 10.3141/2390-11
    [19] DONOHO D L, IAIN M. Johnstone. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81 (3): 425-55. doi: 10.1093/biomet/81.3.425
    [20] 刘黎萍, 孙立军. 高速公路不同车道车型组成分析[J]. 中外公路, 2004 (1): 48-51.

    LIU L P, SUN L J. Analysis of vehicle types in different lanes of freeway[J]. Sino-Foreign Highway, 2004(1): 48-51. (in Chinese)
    [21] KRAUSS S. Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics[D]. Köln: University Cologne, 1998.
    [22] SUMO, Car-Following-Models[EB/OL]. (2023-09-28)[2024 -05-03]. https://sumo.dlr.de/docs/Car-Following-Models.html.
    [23] ERDMANN J. SUMO' s lane-changing model[C]. Modeling Mobility with Open Data, Berlin, Germany: Springer, 2015.
    [24] SUMO, Definition of vehicles, vehicle types, and routes[EB/ OL]. (2023-10-21)[2024-05-03]. https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html.
    [25] CAO P, XIONG Z Q, LIU X B. An analytical model for quantifying the efficiency of traffic-data collection using instrumented vehicles[J]. Transportation Research Part C: Emerging Technologies, 2022, 136: 103558.
    [26] LU X Y, SKABARDONIS A. Freeway traffic shockwave analysis: exploring the NGSIM trajectory data[C]. Transportation Research Board 86th Annual Meeting, Washington, D. C.: TRB, 2007.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  32
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-02
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回