留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于编码-解码架构的高速公路交通冲突深度学习预测方法

魏伟 郑来 焦瀚生

魏伟, 郑来, 焦瀚生. 基于编码-解码架构的高速公路交通冲突深度学习预测方法[J]. 交通信息与安全, 2024, 42(5): 1-13. doi: 10.3963/j.jssn.1674-4861.2024.05.001
引用本文: 魏伟, 郑来, 焦瀚生. 基于编码-解码架构的高速公路交通冲突深度学习预测方法[J]. 交通信息与安全, 2024, 42(5): 1-13. doi: 10.3963/j.jssn.1674-4861.2024.05.001
WEI Wei, ZHENG Lai, JIAO Hansheng. Deep Learning Prediction of Expressway Traffic Conflicts Based on The Encoder-Decoder Architecture[J]. Journal of Transport Information and Safety, 2024, 42(5): 1-13. doi: 10.3963/j.jssn.1674-4861.2024.05.001
Citation: WEI Wei, ZHENG Lai, JIAO Hansheng. Deep Learning Prediction of Expressway Traffic Conflicts Based on The Encoder-Decoder Architecture[J]. Journal of Transport Information and Safety, 2024, 42(5): 1-13. doi: 10.3963/j.jssn.1674-4861.2024.05.001

基于编码-解码架构的高速公路交通冲突深度学习预测方法

doi: 10.3963/j.jssn.1674-4861.2024.05.001
基金项目: 

国家自然科学基金项目 52072097

黑龙江省自然科学基金项目 LH2019E052

详细信息
    作者简介:

    魏伟(1997—),博士研究生. 研究方向:道路交通安全. E-mail:22b932011@stu.hit.edu.cn

    通讯作者:

    郑来(1985—),博士,教授. 研究方向:道路交通安全、智能交通. Email:zhenglai@hit.edu.cn

  • 中图分类号: U491.31

Deep Learning Prediction of Expressway Traffic Conflicts Based on The Encoder-Decoder Architecture

  • 摘要: 为进一步揭示高速公路交通动态交通参数与交通冲突事件的关系。利用highD数据库以3 min为基本单位构建样本,共提取交通流和路段特征23个。基于交通冲突衡量指标后侵入时间(post encroachment time,PET)和不同阈值,统计车辆跟驰和变道过程中不同严重程度的冲突数量。基于随机森林回归(random forest regression,RFR)进行特征筛选,利用数值特征灰度图片转换技术(feature matrix to gray image,FM2GI)技术将各样本转化为灰度图片,结合2D-卷积提取图片特征,构建了卷积神经网络(convolutional neural networks,CNN),C-RFR,C-SVR这3个编码-解码模型,并与基准模型BP神经网络(back propagation neuralnetwork,BPNN)、RFR、支持向量回归(support vector regression,SVR)对比分析。结果表明,基于路段驶入车辆数和驶出车辆数等2个重要特征,平均车头时距、时间占有率、客车平均行驶速度、换道率和驶出点速度方差等5个有效特征,编码-解码架构下的CNN、C-RFR和C-SVR均优于直接应用基准模型,均方根误差(root mean squared error,RMSE)分别降低了12.6%,31.6%,18.5%,能够实现交通冲突的实时预测。其中CNN预测误差最小,且在应对不同严重程度的交通冲突预测时表现出良好的鲁棒性,及对2个关键参数表现出低敏感性。基于FM2GI技术和2D-卷积编码的CNN、C-RFR和C-SVR模型拓展了交通冲突预测建模的深度学习框架,可实现高速公路基本路段多严重程度交通冲突的可靠预测。

     

  • 图  1  highD采集地点分布

    Figure  1.  Locations of recordings included in highD

    图  2  交通冲突示意图

    Figure  2.  Traffic conflicts schematic diagram

    图  3  RFR示意图

    Figure  3.  Schematic diagram of RFR

    图  4  SVR原理示意图

    Figure  4.  Schematic diagram of SVR

    图  5  三层BPNN回归典型结构

    Figure  5.  Typical structure of a three-layer BPNN regression model

    图  6  数值特征到图像转换流程图

    Figure  6.  Flow chart of the transformation from numeric features to images

    图  7  2D-卷积层工作原理(过滤器:2×2×3)

    Figure  7.  Principle of 2D-convolution(Filter: 2 × 2×3)

    图  8  编码-解码模型框架结构示意

    Figure  8.  Framework of encoder-decoder model

    图  9  特征重要度排序

    Figure  9.  Ranking of feature importance

    图  10  模型预测值与观测值对比

    Figure  10.  Comparison between predicted value and observed value

    图  11  BP神经网络结构及训练过程

    Figure  11.  The structure and training process of BPNN

    图  12  图像转换示例图

    Figure  12.  Examples of transformed gray images

    图  13  卷积层结构示意图

    Figure  13.  Schematic diagram of Convolutional Layers

    图  14  全连接层结构

    Figure  14.  Structure of full connected layers

    图  15  编码-解码模型预测结果

    Figure  15.  Predictive results of encoder-decoder models

    图  16  模型评价指标对比图

    Figure  16.  Comparison of different model evaluation indicators

    图  17  基于PET阈值的鲁棒性分析

    Figure  17.  Robustness analysis based on different PET thresholds

    图  18  图像大小敏感性分析

    Figure  18.  Sensitivity analysis based on different image sizes

    图  19  不同批次大小敏感性分析

    Figure  19.  Sensitivity analysis based on different batch sizes

    图  20  模型训练过程对比

    Figure  20.  Comparison of different model training process

    表  1  highD数据库属性

    Table  1.   Main characteristics of highD

    属性 描述 属性 描述
    采集时间 2017年、2018年 车辆平均可见时长/s 13.6
    采集地点 6个 车辆总数 110 000
    总时长/h 16.5 小汽车数量 -90 000
    总距离/km 45 000 货车数量 -20 000
    平均时长/h 17 单向车道数 2~3
    路段长度/m 400~420 变道行为/次 5 600
    下载: 导出CSV

    表  2  路段和交通流特征

    Table  2.   Characteristics of expressway segments and traffic flow

    变量 描述 变量 描述
    S 路段编号 V 观测时间内各车辆平均行驶速度的均值/(km/h)
    D 上下行方向 VC 观测时间内各客车平均行驶速度的均值/(km/h)
    N 单向车道数 VT 观测时间内各货车平均行驶速度的均值/(km/h)
    i 限速情况(限速、不限速) o 时间占有率/%
    w 星期 H 平均车头时距/s
    T 货车混入率 AU 驶入观测路段处车辆点速度均值/(m/s)
    Mc 路段长度与所有客车行驶时间均值之比/(km/h) AD 驶出观测路段处车辆点速度均值/(m/s)
    MT 路段长度与所有货车行驶时间均值之比/(km/h) vU 驶入观测路段处车辆点速度方差/(m/s)2
    M 路段长度与所有车辆行驶时间均值之比/(km/h) vD 驶出观测路段处车辆点速度方差/(m/s)2
    L 观测时间内车辆长度的均值/m I 观测时间内驶入观测路段的车辆数/veh
    W 观测时间内车辆宽度的均值/m O 观测时间内驶出观测路段的车辆数/veh
    R 观测时间内各车辆变道率/%
    下载: 导出CSV

    表  3  多严重程度交通冲突统计

    Table  3.   Statistics of different severities of traffic conflicts

    冲突严重程度 冲突频数均值 冲突频数方差
    PET≤1 s 68.53 31.47
    PET≤1.5 s 106.02 47.11
    PET≤2 s 132.36 55.98
    PET≤2.5 s 149.74 61.00
    PET≤3 s 163.55 64.14
    下载: 导出CSV

    表  4  基于不同核函数的SVR结果

    Table  4.   Results of SVR based on different kernels

    模型 R2 MAE RMSE
    线性核函数 0.96 9.654 13.258
    多项式核函数 0.88 13.649 22.795
    径向基核函数 0.78 19.198 30.802
    下载: 导出CSV

    表  5  各模型评估结果

    Table  5.   Evaluation results of different models

    模型 R2 MAE RMSE
    BPNN 0.981 6.243 9.055
    SVR 0.96 9.654 13.258
    RFR 0.973 7.111 10.742
    CNN 0.985 5.559 7.913
    C-SVR 0.981 6.287 9.072
    C-RFR 0.982 6.572 8.75
    下载: 导出CSV
  • [1] ZHENG L, ISMAIL K, SAYED T, et al. Bivariate extreme value modeling for road safety estimation[J]. Accident Analysis & Prevention, 2018, 120: 83-91.
    [2] 公安部交通管理局. 道路交通事故统计年报[R]. 北京: 公安部交通管理局, 2019.

    Ministry of Public Security, Transportation Bureau. The road traffic accidents statistics report in China[R]. Beijing: Ministry of Public Security, Transportation bureau, 2019. (in Chinese)
    [3] 孟祥海, 张晓明, 郑来. 基于线形与交通状态的山区高速公路追尾事故预测[J]. 中国公路学报, 2012, 25(4): 113-118. doi: 10.3969/j.issn.1001-7372.2012.04.019

    MENG X H, ZHANG X M, ZHENG L, Prediction of rear-end collision on mountainous expressway based on geometric alignment and traffic conditions[J]. China Journal of Highway and Transport, 2012, 25(4): 113-118. (in Chinese) doi: 10.3969/j.issn.1001-7372.2012.04.019
    [4] 高雪林, 汤厚骏, 沈佳平, 等. 基于XGBoost的高速公路事故类型及严重程度预测方法[J]. 交通信息与安全, 2023, 41 (4): 55-63. doi: 10.3963/j.jssn.1674-4861.2023.04.006

    GAO X L, TANG H J, SHEN J P, et al. A method for predicting the type and severity of freeway accidents based on XGBoost[J]. Journal of Transport Information and Safety, 2023, 41(4): 55-63. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.04.006
    [5] 马聪, 张生瑞, 马壮林, 等. 高速公路交通事故非线性负二项预测模型[J]. 中国公路学报, 2018, 31(11): 176-185. doi: 10.3969/j.issn.1001-7372.2018.11.019

    MA C, ZHANG S R, MA Z L, et al. Nonlinear negative binomial regression model of expressway traffic accident frequency prediction[J]. China Journal of Highway and Transport, 2018, 31(11): 176-185. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.11.019
    [6] ZHENG L, SAYED T, MANNERING F. Modeling traffic conflicts for use in road safety analysis: a review of analytic methods and future directions[J]. Analytic Methods in Accident Research, 2021, 29: 100142. doi: 10.1016/j.amar.2020.100142
    [7] 朱顺应, 蒋若曦, 王红, 等. 机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33(2): 15-33.

    ZHU S Y, JIANG R X, WANG H, et al. Review of research on traffic conflict techniques[J]. China Journal of Highway and Transport, 2020, 33(2): 15-33. (in Chinese)
    [8] 郑来, 侯芹忠, 郭延永, 等. 高速公路合流区冲突极值建模与交通事故预测[J]. 公路交通科技, 2022, 39(10): 132-140. doi: 10.3969/j.issn.1002-0268.2022.10.017

    ZHENG L, HOU Q Z, GUO Y Y, et al. Conflict extremum modeling and traffic accident prediction for expressway merging areas[J]. Journal of Highway and Transportation Research and Development, 2022, 39(10): 132-140. (in Chinese) doi: 10.3969/j.issn.1002-0268.2022.10.017
    [9] 郑来, 邓晓庆, 孟祥海. 基于PET极值统计的高速公路车道变换行为安全性研究[J]. 公路交通科技, 2016, 33(8): 120-126.

    ZHENG L, DENG X Q. MENG X H. Study on safety of lane changing behaviours on expressway based on PET extreme statistics[J]. Journal of Highway and Transportation Research and Development, 2016, 33(8): 120-126. (in Chinese)
    [10] 孟祥海, 林兰平. 高速公路分合流区潜在事故风险研究[J]. 中国安全科学学报, 2015, 25(8): 164-170.

    MEGN X H, LIN L P. Research on potential crash risk in freeway merging and diverging areas[J]. China Safety Science Journal. 2015, 25(8): 164-170. (in Chinese)
    [11] 马艳丽, 祁首铭, 吴昊天, 等. 基于PET算法的匝道合流区交通冲突识别模型[J]. 交通运输系统工程与信息, 2018, 18 (2): 142-148.

    MA Y L, QI S M, WU H T, et al., Traffic conflicts identification model based on post encroachment time algorithm in ramp merging area[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2): 142-148. (in Chinese)
    [12] 戢晓峰, 谢世坤, 覃文文, 等. 基于轨迹数据的山区危险性弯道路段交通事故风险动态预测[J]. 中国公路学报, 2022, 35(4): 277-285. doi: 10.3969/j.issn.1001-7372.2022.04.023

    JI X F, XIE S K, QIN W W, et al. Dynamic prediction of traffic accident risk in risky curve sections based on vehicle trajectory data[J]. China Journal of Highway and Transport, 2022, 35(4): 277-285. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.04.023
    [13] SUN Y, MALLICK T, BALAPRAKASH P, et al. A data-centric weak supervised learning for highway traffic incident detection[J]. Accident Analysis & Prevention, 2022, 176: 106779.
    [14] ARVIN R, KHATTAK A J, QI H. Safety critical event prediction through unified analysis of driver and vehicle volatilities: Application of deep learning methods[J]. Accident Analysis & Prevention, 2021, 151: 105949.
    [15] ZHENG L, HU Z L, SAYED T. Traffic conflict prediction at signal cycle level using Bayesian optimized machine learning approaches[J]. Transportation Research Record: Journal of the Transportation Research Board, 2022, 2677(5): 183-195.
    [16] KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems[C]. 21st International Conference on Intelligent Transportation Systems, Maui, HI, USA: IEEE, 2018.
    [17] ESSA M, SAYED T. Full Bayesian conflict-based models for real time safety evaluation of signalized intersections[J]. Accident Analysis & Prevention, 2019, 129: 367-381.
    [18] GROMPING, U. Variable importance assessment in regression: linear regression versus random forest[J]. The American Statistician, 2009, 63(4), 308-319.
    [19] 翁剑成, 孙宇星, 孔宁, 等. 基于多源数据的公交专用道效能评价方法与影响模型[J]. 中国公路学报, 2022, 35(4): 267-276.

    WENG J C, SUN Y X, KONG N, et al. Evaluation method and influence model of bus lane performance based on multi-source data[J]. China Journal of Highway and Transport, 2022, 35(4): 267-276. (in Chinese)
    [20] 司伟, 茆纬杰, 李宁, 等. 寒区沥青路面智慧化施工混合料温度预估机器学习模型[J]. 中国公路学报, 2023, 36(3): 81-97.

    SI W, MAO W J, LI N, et al. Research on machine learning model for temperature prediction of asphalt mixture in intelligent construction of asphalt pavement in cold regions[J]. China Journal of Highway and Transport, 2023, 36(3): 81-97. (in Chinese)
    [21] ZHENG Q K, XU C C, LIU P, et al. Investigating the predictability of crashes on different freeway segments using the real-time crash risk models[J]. Accident Analysis & Prevention, 2021, 159: 106213.
    [22] 赵炜华, 刘浩学, 赵建有, 等. 基于BP神经网络的驾驶员昼夜动态空间距离判识规律[J]. 中国公路学报, 2010, 23(2): 92-98.

    ZHAO W H, LIU H X, ZHAO J Y, et al. Law of BP neural network-based space distance cognition of driver in dynamic environment at day and night[J]. China Journal of Highway and Transport, 2010, 23(2): 92-98. (in Chinese)
    [23] SHARMA A, VANS E, SHIGEMIZU D, et al. DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture[J]. Scientific Reports, 2019, 9: 11399.
    [24] RAHIM M A, HASSAN H M. A deep learning based traffic crash severity prediction framework[J]. Accident Analysis & Prevention, 2021, 154: 106090.
    [25] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
    [26] LI P, ABDEL-ATY M, YUAN J H. Real-time crash risk prediction on arterials based on LSTM-CNN[J]. Accident Analysis & Prevention, 2020, 135: 105371.
    [27] WANG H, REN K, SONG J. A closer look at batch size in mini-batch training of deep auto-encoders[C]. 3rd IEEE International Conference on Computer and Communications, Chengdu, China: IEEE, 2017.
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  57
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回