Determinants of Pedestrians' Psychological Boundary in the Coexistence of Pedestrian and Non-motorized Vehicles
-
摘要: 探究人非混行状态下的行人心理边界影响机制,有助于从交通设计、交通管理等维度针对性地提高人非共板道路上行人的出行安全性和舒适性。为克服现有研究仅考虑行人自身人际空间范围期望的不足,根据心理包络理论,从行人期望的安全活动边界(subject mental envelope,SME)和行人期望非机动车的约束活动边界(object mental envelope,OME)2个维度,重构人非混行状态下的行人心理边界。通过引入感知威胁、感知亲密和个人特征,新增优先权作为潜在影响因素,构建人非混行状态下的行人心理边界影响机制模型。采用偏最小二乘法结构方程分析进行模型适配性检验和路径分析,模型的SRMR值为0.035,SME和OME的R2分别为0.728和0.773,表明模型拟合水平可接受,且解释力较强。研究结果表明:感知威胁和感知亲密对OME的影响大于对SME的影响,表明当行人认为非机动车有潜在威胁且不友好时,其更期望能约束非机动车的骑行范围;优先权对OME正向影响程度大于SME,表明当行人认为自己的优先权高于非机动车时,其更期望进一步约束非机动车的活动边界;非机动车交通量仅显著影响OME;OME正向影响SME,表明扩展引入的OME可进一步解释行人对自身安全活动空间的需求;个人特征中性别和身高对SME和OME均有显著影响,而每周平均骑行次数仅显著影响OME。Abstract: Investigating the mechanisms influencing pedestrians' psychological boundary in the coexistence of pedestrians and non-motorized vehicles is crucial for improving pedestrian safety and comfort in traffic design and management. This study addresses the limitations of previous studies, which mainly focus on pedestrians'interpersonal spatial expectations. To this end, this study redefines psychological boundaries between pedestrians and non-motorized vehicles based on the mental envelop theory from the two key dimensions: the subject mental envelope (SME) anticipated by pedestrians and the object mental envelope (OME) imposed by pedestrians concerning non-motorized vehicles. Next, the proposed model incorporates perceived threat, perceived closeness, and personal characteristics, and priority as a potential influencing factor. The structural equation model with partial least squares is employed to assess model fit and conduct path analysis. The estimation results show that the SRMR value is 0.035, and R2 values for SME and OME are 0.728 and 0.773, respectively, indicating good fit and strong explanatory power. Further, results show that perceived threat and closeness significantly affect both SME and OME, with stronger effects on OME, which suggests that pedestrians perceive non-motorized vehicles as a threat and demand stricter boundaries for their riding areas. Priority demonstrates a greater positive impact on OME than that on SME, suggesting that pedestrians, when feeling prioritized, expect stricter constraints on non-motorized vehicles. The traffic volume of non-motorized vehicles has a substantial impact on OME. OME also positively influences SME, suggesting that the expanded OME can further elucidate pedestrians' requirements for their safe-activity space. Notably, gender and height of a pedestrian significantly impact both SME and OME, while average weekly cycling frequency significantly affects OME exclusively.
-
Key words:
- traffic safety /
- pedestrian /
- psychological boundary /
- mental envelope /
- structural equation model
-
表 1 变量题项设计
Table 1. Item design for variables
潜变量 显变量 题项内容 安全活动边界SME SME1 步行时,我不希望非机动车侵入我的个人空间。 SME2 步行时,只要我的个人空间不被侵入,非机动车可以使用其余的道路空间。 约束活动边界OME OME1 步行时,当我附近出现非机动车时,我希望非机动车能远离我或是停下来。 OME2 步行时,我希望非机动车能被限制在离我很远的道路空间里,这样我可以自由地使用其余的道路空 感知威胁PT PT1 遇到非机动车时,你会感到有压力吗? PT2 你认为非机动车比你强势吗? PT3 遇到非机动车时,你感到危险吗? 感知亲密PC PC1 你认为非机动车友好吗? PC2 你熟悉非机动车的行驶规律或是特点吗? 表 2 样本分布特征
Table 2. Respondent characteristics of the survey
个人特征 类型 数量 占比/% 性别 男 127 47.2 女 142 52.8 > 19~25 60 22.3 年龄/岁 > 25~40 67 24.9 > 40~55 64 23.8 > 55~65 63 23.4 > 65 15 5.6 ≤160 52 19.3 身高/cm > 160~170 75 27.9 > 170~180 78 29.0 > 180 64 23.8 ≤5 97 36.1 每周平均骑行次数 > 5~10 119 44.2 > 10 53 19.7 合计 269 100.0 表 3 信度和效度分析
Table 3. Reliability and validity testing
潜变量 显变量 标准化因子载荷 Cronbach's α CR AVE SME SME1 0.918 0.818 0.917 0.846 SME2 0.922 OME OME1 0.913 0.796 0.907 0.830 OME2 0.909 PT1 0.875 PT PT2 0.880 0.860 0.915 0.781 PT3 0.896 PC PC1 0.914 0.809 0.913 0.840 PC2 0.918 表 4 区别效度检验
Table 4. Discriminant validity testing
潜变量 SME OME PT PC SME 0.920 OME 0.778*** 0.911 PT 0.847*** 0.812*** 0.884 PC -0.818*** -0.795*** -0.837*** 0.916 注“:***”为p < 0.001“;**”为p < 0.01;“*”为p < 0.05;对角线为AVE值平方根。 表 5 模型路径分析
Table 5. Model path analysis
假设 路径关系 标准化路径系数 P值 假设是否成立 H1a 感知威胁 → SME 0.359 0.000 是 H2a 感知亲密 → SME -0.268 0.000 是 H3a 优先权 → SME 0.112 0.047 是 H4a 交通量 → SME 0.013 0.442 否 H5a 性别 → SME 0.099 0.047 是 H6a 年龄 → SME 0.006 0.844 否 H7a 身高 → SME -0.092 0.047 是 H8a 每周平均骑行次数 → SME -0.017 0.532 否 H1b 感知威胁 → OME 0.411 0.000 是 H2b 感知亲密 → OME -0.309 0.000 是 H3b 优先权 → OME 0.227 0.000 是 H4b 交通量 → OME 0.201 0.001 是 H5b 性别 → OME 0.151 0.024 是 H6b 年龄 → OME 0.002 0.955 否 H7b 身高 → OME -0.088 0.045 是 H8b 每周平均骑行次数 → OME -0.080 0.048 是 H9 OME → SME 0.131 0.029 是 -
[1] 任福田, 肖秋生, 薛宗惠. 城市道路与规划设计[M]. 北京: 中国建筑工业出版社, 1999.REN F T, XIAO Q S, XUE Z H. Urban road and planning design[M]. Beijing: China Building Industry Press, 1999. (in Chinese) [2] 魏雯, 杜雨萌, 董傲然, 等. 基于CIDAS数据与集成学习的电动两轮车骑行者伤害致因分析[J]. 交通信息与安全, 2022, 40(2): 45-52, 62. doi: 10.3963/j.jssn.1674-4861.2022.02.006WEI W, DU Y M, DONG A R, et al. An analysis of factors affecting injury of electric two-wheeler riders based on CIDAS data and ensemble learning[J]. Journal of Transport Information and Safety, 2022, 40(2): 45-52, 62. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.006 [3] 汤天培, 陈丰, 郭赟韬, 等. 基于强化敏感性理论的电动自行车风险骑行行为影响因素[J]. 交通信息与安全, 2021, 39 (3): 25-32. doi: 10.3963/j.jssn.1674-4861.2021.03.004TANG T P, CHEN F, GUO Y T, et al. Influencing factors of electrical bikes' risky riding behaviors based on reinforcement sensitivity theory[J]. Journal of Transport Information and Safety, 2021, 39(3): 25-32. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.03.004 [4] PHAM T Q, NAKAGAWA C, SHINTANI A, et al. Evaluation of the effects of a personal mobility vehicle on multiple pedestrians using personal space[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2028-2037. doi: 10.1109/TITS.2014.2388219 [5] DIAS C, IRYO-ASANO M, NISHIUCHI H, et al. Calibrating a social force based model for simulating personal mobility vehicles and pedestrian mixed traffic[J]. Simulation Modelling Practice and Theory, 2018, 87: 395-411. doi: 10.1016/j.simpat.2018.08.002 [6] NISHIUCHI H, SATO T, ARATANI T, et al. An analysis of Segway behavior focusing on safety distance for pedestrians and gaze of riders[C]. 17th ITS World Congress, Busan: TRIO, 2010. [7] MORALES Y, AKAI N, MURASE H. Personal mobility vehicle autonomous navigation through pedestrian flow: a data driven approach for parameter extraction[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid: IEEE, 2018. [8] NAKAGAWA C, IMAMURA K, SHINTANI A, et al. Simulations of the relationship between a personal mobility vehicle and pedestrians[C]. IEEE International Systems Conference SysCon, Vancouver: IEEE, 2012. [9] HASEGAWA Y, DIAS C, IRYO-ASANO M, et al. Modeling pedestrians' subjective danger perception toward personal mobility vehicles[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 56: 256-267. doi: 10.1016/j.trf.2018.04.016 [10] 袁泉, 晏楠飞, 郝威. 基于心理安全距离的行人风险评价及预警算法研究[J]. 中国公路学报, 2022, 35(1): 109-118.YUAN Q, YAN N F, HAO W. Pedestrian risk assessment and early warning algorithm based on psychological safety distance[J]. China Journal of Highway and Transport, 2022, 35(1): 109-118. (in Chinese) [11] VASSALLO C, OLIVIER A H, SOUÈRES P, et al. How do walkers avoid a mobile robot crossing their way?[J]. Gait & Posture, 2017, 51: 97-103. [12] VASSALLO C, OLIVIER A H, SOUÈRES P, et al. How do walkers behave when crossing the way of a mobile robot that replicates human interaction rules?[J]. Gait & Posture, 2018, 60: 188-193. [13] QIAN M, JIANG J. COVID-19 and social distancing[J]. Journal of Public Health, 2020, 30: 259-261. [14] DE VOS J. The effect of COVID-19 and subsequent social distancing on travel behavior[J]. Transportation Research Interdisciplinary Perspectives, 2020, (5): 100121. [15] SUN C, ZHAI Z. The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission[J]. Sustainable Cities and Society, 2020, 62: 102390. doi: 10.1016/j.scs.2020.102390 [16] ZOU L, YAI T. A proposal of envelope theorem on the mixed traffic of pedestrians and various mobilities[J]. Asian Transport Studies, 2022, (8): 100050. [17] HECHT H, WELSCH R, VIEHOFF J, et al. The shape of personal space[J]. Acta Psychologica, 2019, 193: 113-122. doi: 10.1016/j.actpsy.2018.12.009 [18] IACHINI T, COELLO Y, FRASSINETTI F, et al. Body space in social interactions: a comparison of reaching and comfort distance in immersive virtual reality[J]. PloS One, 2014, 9(11): e111511. doi: 10.1371/journal.pone.0111511 [19] IACHINI T, PAGLIARO S, RUGGIERO G. Near or far? It depends on my impression: moral information and spatial behavior in virtual interactions[J]. Acta Psychologica, 2015, 161: 131-136. doi: 10.1016/j.actpsy.2015.09.003 [20] MEAD R, MATARIĆ M J. Robots have needs too: how and why people adapt their proxemic behavior to improve robot social signal understanding[J]. Journal of Human-Robot Interaction, 2016, 5(2): 48-68. doi: 10.5898/JHRI.5.2.Mead [21] KIM Y, KWAK S S, KIM M S. Am I acceptable to you? effect of a robot's verbal language forms on people's social distance from robots[J]. Computers in Human Behavior, 2013, 29(3): 1091-1101. doi: 10.1016/j.chb.2012.10.001 [22] IACHINI T, COELLO Y, FRASSINETTI F, et al. Peripersonal and interpersonal space in virtual and real environments: effects of gender and age[J]. Journal of Environmental Psychology, 2016, 45: 154-164. doi: 10.1016/j.jenvp.2016.01.004 [23] EVA P, ANDREA K. Determination of priority stream volumes for capacity calculation of minor traffic streams for intersections with bending right-of-way[J]. Transportation Research Procedia, 2019, 40: 875-882. doi: 10.1016/j.trpro.2019.07.123 [24] SANTOS-GONZÁLEZ I, CABALLERO-GIL P, RIVERO-GARCÍA A, et al. Priority and collision avoidance system for traffic lights[J]. Ad Hoc Networks, 2019, 94: 101931. doi: 10.1016/j.adhoc.2019.101931 [25] HAIR JR J, HAIR JR J F, HULT G T M, et al. A primer on partial least squares structural equation modeling (PLS-SEM)[M]. Thousand Oaks: Sage Publications, 2021. [26] FORNELL C, LARCKER D F. Evaluating structural equation models with unobservable variables and measurement error[J]. Journal of Marketing Research, 1981, 18(1): 39-50. doi: 10.1177/002224378101800104 [27] WANG C, YAO X, SINHA P N, et al. Why do government policy and environmental awareness matter in predicting NEVs purchase intention? moderating role of education level[J]. Cities, 2022, 131: 103904. doi: 10.1016/j.cities.2022.103904 -