留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低附着下分布式驱动车辆的路径跟踪与横向稳定性控制方法

杨炜 谭亮 杜亚峰 孙雪 张宇杰

杨炜, 谭亮, 杜亚峰, 孙雪, 张宇杰. 低附着下分布式驱动车辆的路径跟踪与横向稳定性控制方法[J]. 交通信息与安全, 2023, 41(6): 61-70. doi: 10.3963/j.jssn.1674-4861.2023.06.007
引用本文: 杨炜, 谭亮, 杜亚峰, 孙雪, 张宇杰. 低附着下分布式驱动车辆的路径跟踪与横向稳定性控制方法[J]. 交通信息与安全, 2023, 41(6): 61-70. doi: 10.3963/j.jssn.1674-4861.2023.06.007
YANG Wei, TAN Liang, DU Yafeng, SUN Xue, ZHANG Yujie. Path Tracking and Lateral Stability Control for Distributed Drive Vehicles with Low Adhesion[J]. Journal of Transport Information and Safety, 2023, 41(6): 61-70. doi: 10.3963/j.jssn.1674-4861.2023.06.007
Citation: YANG Wei, TAN Liang, DU Yafeng, SUN Xue, ZHANG Yujie. Path Tracking and Lateral Stability Control for Distributed Drive Vehicles with Low Adhesion[J]. Journal of Transport Information and Safety, 2023, 41(6): 61-70. doi: 10.3963/j.jssn.1674-4861.2023.06.007

低附着下分布式驱动车辆的路径跟踪与横向稳定性控制方法

doi: 10.3963/j.jssn.1674-4861.2023.06.007
基金项目: 

国家重点研发计划项目 2021YFE0203600

陕西省自然科学基金青年项目 2017JQ6045

详细信息
    通讯作者:

    杨炜(1985—),博士,讲师. 研究方向:汽车主动安全技术、智能网联汽车,E-mail: yw@chd.edu.cn

  • 中图分类号: U471.15

Path Tracking and Lateral Stability Control for Distributed Drive Vehicles with Low Adhesion

  • 摘要: 由于车辆在低附着工况(如积雪、潮湿)下跟踪性与横向稳定性的耦合关系,这使得二者之间的控制难以同时满足跟踪精度及良好的稳定性需求,因此,研究了基于分布式独立驱动电动汽车平台的路径跟踪与横向稳定性联合控制模型。对于路径跟踪问题,采用了横纵向解耦控制;对于横向跟踪控制问题,模型采用基于Frenet坐标系的模型预测控制(model predictive control,MPC)路径跟踪控制方法,并引入了转角补偿策略以提升路径跟踪的准确性;对于纵向车速控制问题,模型利用MPC求解期望加速度,并根据行驶平衡方程和保证路面附着最大利用率的条件下确定电机扭矩输出,实现对纵向车速的控制。对于横向稳定性控制问题,提出了基于稳定性增强系统(stability augmentation system,STA)的横摆力矩控制模型,在获得附加力矩后,以二次规划方法将其合理分配到各个车轮上,从而增强了车辆的横向稳定性。最后,通过CarSim/Simulink联合仿真平台,在双移线道路工况下进行了仿真验证。结果表明:在积雪路面,改进模型相比传统MPC在保证横向误差接近的条件下,最大的质心侧偏角降低了83.1%;在潮湿路面,改进模型相比传统MPC模型最大横向误差降低了52.2%,最大质心侧偏角降低了83.3%;相比于传统滑膜,本文模型在跟踪误差与质心侧偏角占优势的情况下,有效的抑制了震荡现象。通过联合控制,可以加强车辆在低附着路面的稳定性与安全性。

     

  • 图  1  车辆动力学模型

    Figure  1.  Vehicle dynamics model

    图  2  Frenet坐标系下误差关系

    Figure  2.  Error relationship in Frenet coordinate system

    图  3  基于闭环PID转角补偿的MPC控制策略

    Figure  3.  MPC control strategy based on closed-loop PID angle compensation

    图  4  超螺旋算法相轨迹

    Figure  4.  Supercoiled algorithm phase trajectories

    图  5  μ = 0.3,vx = 65 km/h匀速工况

    Figure  5.  μ = 0.3, vx = 65 km/h constant speed working condition

    图  6  误差示意图

    Figure  6.  Error schematic

    图  7  μ = 0.6,初速度54 km/h加速工况

    Figure  7.  μ = 0.6, initial speed 54 km/h acceleration condition

  • [1] 熊璐, 杨兴, 卓桂荣, 等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报, 2020, 56: 127-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010017.htm

    XIONG L, YANG X, ZHUO G R, et al. Overview of the development status of motion control for autonomous vehicles[J]. Journal of Mechanical Engineering, 2020, 56: 127-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010017.htm
    [2] 陈慧岩, 陈舒平, 龚建伟. 智能汽车横向控制方法研究综述[J]. 兵工学报, 2017, 38: 1203-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201706021.htm

    CHEN H Y, CHEN S P, GONG J W. Overview of horizontal control methods for intelligent vehicles[J]. Acta Ordnance Engineering, 2017, 38: 1203-1214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201706021.htm
    [3] 潘洺铭, 孙宇波, 刘强. 智能汽车对无信号交叉口行人的避撞控制[J]. 交通信息与安全, 2021, 39(2): 19-27. doi: 10.3963/j.jssn.1674-4861.2021.02.003

    PAN M M, SUN Y B, LIU Q. Collision avoidance control by intelligent vehicle for pedestrians at unsignaled intersection[J]. Journal of Transport Information and Safety, 2021, 39 (2): 19-27. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.003
    [4] 段敏, 孙小松, 张博涵. 基于模型预测控制与离散线性二次型调节器的智能车横纵解耦跟踪控制[J]. 汽车技术, 2022, (8): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS202208005.htm

    DUAN M, SUN X S, ZHANG B H. Horizontal and longitudinal decoupling tracking control of intelligent vehicle based on model predictive control and discrete linear quadratic regulator[J]. Automotive Technology, 2022, 563(8): 38-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS202208005.htm
    [5] 高琳琳, 唐风敏, 郭蓬, 等. 自动驾驶横向运动控制的改进LQR方法研究[J]. 机械科学与技术, 2021, 40: 435-441. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202103018.htm

    GAO L L, TANG F M, GUO P, et al. Research on improved LQR method for lateral motion control of automatic driving[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40: 435-441. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202103018.htm
    [6] BROWN M, FUNKE J, ERLIEN S, et al. Safe driving envelopes for path tracking in autonomous vehicles[J]. Control Engineering Practice, 2017, 61: 307-316. doi: 10.1016/j.conengprac.2016.04.013
    [7] 石贞洪, 江洪, 于文浩, 等. 适用于路径跟踪控制的自适应MPC算法研究[J]. 计算机工程与应用, 2020, 56: 266-271. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202021041.htm

    SHI Z H, JIANG H, YU W H, et al. Research on adaptive MPC algorithm for path tracking control[J]. Computer Engineering and Applications, 2020, 56: 266-271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202021041.htm
    [8] SONG X, SHAO Y, QU Z. A vehicle trajectory tracking method with a time-varying model based on the model predictive control[J]. IEEE Access, 2019(8): 16573-16583.
    [9] TAHERIAN S, HALDER K, DIXIT S, et al. Autonomous collision avoidance using MPC with LQR-based weight transformation[J]. Sensors, 2021, 21(13): 4296. doi: 10.3390/s21134296
    [10] CHANG X, ZHANG H, YAN S, et al. Analysis and roll prevention control for distributed drive electric vehicles[J]. World Electric Vehicle Journal, 2022, 13(11): 210. doi: 10.3390/wevj13110210
    [11] HUANG W, YANG X, ZHU S. Torque vectoring controller of distributed-drive electric vehicle for acceleration slip regulation and lateral stability enhancement: design and test[R]. Shanghai: SAE Technical Paper, 2020.
    [12] LIANG X, WANG Q, CHEN W, et al. Coordinated control of distributed drive electric vehicle by TVC and ESC based on function allocation[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236(4): 606-620. doi: 10.1177/09544070211026185
    [13] YU Z, LENG B, XIONG L, et al. Direct yaw moment control for distributed drive electric vehicle handling performance improvement[J]. Chinese Journal of Mechanical Engineering, 2016, 29(3): 486-497. doi: 10.3901/CJME.2016.0314.031
    [14] HAI D, XIE X, JIN L. Study on the stability control strategy for distributed driving electric vehicle[C]. 9th International Conference on Green Intelligent Transportation Systems and Safety, Green, Singapore: Springer, 2020: 757-766.
    [15] LU Y, LI J, JIANG W, et al. Research on handling stability control strategy of distributed drive electric vehicle[C]. 2022 6th CAA International Conference on Vehicular Control and Intelligence(CVCI), Beijing: IEEE, 2022.
    [16] 张雷, 赵宪华, 王震坡. 四轮轮毂电机独立驱动电动汽车轨迹跟踪与横摆稳定性协调控制研究[J]. 汽车工程, 2020, 42(11): 1513-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202011009.htm

    ZHANG L, ZHAO X H, WANG Z P. Research on coordinated control of trajectory tracking and yaw stability of electric vehicle driven by four-wheel hub motor[J]. Automotive Engineering, 2020, 42(11): 1513-1521. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202011009.htm
    [17] 陈特, 陈龙, 徐兴, 等. 分布式驱动无人车路径跟踪与稳定性协调控制[J]. 汽车工程, 2019, 41: 1109-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910001.htm

    CHEN T, CHEN L, XU X, et al. Path tracking and stability coordination control of distributed drive unmanned vehicle[J]. Automotive Engineering, 2019, 41: 1109-1116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910001.htm
    [18] RAJAMANI R. Vehicle dynamics and control[M]. Cham, Switzerland: Springer Science & Business Media, 2011.
    [19] DAVILA J, FRIDMAN L, LEVANT A. Second-order sliding-mode observer for mechanical systems[J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1785-1789. doi: 10.1109/TAC.2005.858636
    [20] 刘陆, 丁世宏, 李世华. 高阶滑模控制理论综述[J]. 控制理论及应用, 2022, 39(12): 2193-2201. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202212001.htm

    LIU L, DING S H, LI S H. Review of high order sliding mode control theory[J]. Control Theory & Applications, 2022, 39(12): 2193-2201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202212001.htm
    [21] 连晋毅, 王坤, 任艳强. 分布驱动式纯电动汽车直接横摆力矩控制研究[J]. 机械设计与制造, 2023, (11): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202311029.htm

    LIAN J Y, WANG K, REN Y Q. Research on direct yaw torque control of distributed drive pure electric vehicle[J]. Machinery Design & Manufacture, 2023, (11): 149-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202311029.htm
  • 加载中
图(7)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  32
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 网络出版日期:  2024-04-03

目录

    /

    返回文章
    返回