留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于安全车速的北京冬奥会山地道路冰雪路面通行能力研究

郭娅眀 李萌 李昀轩 闫慧敏 王笑颜

郭娅眀, 李萌, 李昀轩, 闫慧敏, 王笑颜. 基于安全车速的北京冬奥会山地道路冰雪路面通行能力研究[J]. 交通信息与安全, 2022, 40(4): 54-63. doi: 10.3963/j.jssn.1674-4861.2022.04.006
引用本文: 郭娅眀, 李萌, 李昀轩, 闫慧敏, 王笑颜. 基于安全车速的北京冬奥会山地道路冰雪路面通行能力研究[J]. 交通信息与安全, 2022, 40(4): 54-63. doi: 10.3963/j.jssn.1674-4861.2022.04.006
GUO Yaming, LI Meng, LI Yunxuan, YAN Huimin, WANG Xiaoyan. Capacity of Mountainous Roads with Ice and Snow Pavement During Beijing Winter Olympics Based on a Safe Speed Model[J]. Journal of Transport Information and Safety, 2022, 40(4): 54-63. doi: 10.3963/j.jssn.1674-4861.2022.04.006
Citation: GUO Yaming, LI Meng, LI Yunxuan, YAN Huimin, WANG Xiaoyan. Capacity of Mountainous Roads with Ice and Snow Pavement During Beijing Winter Olympics Based on a Safe Speed Model[J]. Journal of Transport Information and Safety, 2022, 40(4): 54-63. doi: 10.3963/j.jssn.1674-4861.2022.04.006

基于安全车速的北京冬奥会山地道路冰雪路面通行能力研究

doi: 10.3963/j.jssn.1674-4861.2022.04.006
基金项目: 

国家重点研发计划项目 2018YFB1601600

中国博士后科学基金项目 2021M701899

详细信息
    作者简介:

    郭娅眀(1988—),硕士,工程师. 研究方向:智能交通. E-mail:guoyaming213@126.com

    通讯作者:

    李昀轩(1989—),博士,助理研究员. 研究方向:交通安全、应急管控. E-mail: liyunxuan_1989@163.com

  • 中图分类号: U491.31

Capacity of Mountainous Roads with Ice and Snow Pavement During Beijing Winter Olympics Based on a Safe Speed Model

  • 摘要: 复杂山地线形和道路冰雪路面结合条件下的安全车速设置及通行能力保障是交通管理面临的新挑战。针对北京冬奥会延庆赛区复杂山地道路冰雪路面场景,建立了安全车速与道路线形设计及路面附着系数之间的关系,以安全车速为依据得到了不同路面条件下山地道路的通行能力。依据道路平曲线、竖曲线和横断面数据建立了山地道路三维空间模型;分析了车辆在山地道路平纵组合路段的受力情况,构建了车辆安全行驶速度与圆曲线半径、道路超高、纵坡坡度和路面附着系数的关系模型,并分析了基于安全车速模型的道路通行能力。为了验证模型,选取2种常见的冰雪路面状况和2种常用的车辆类型,获得不同条件下山地道路冰雪路面的安全车速。采用VISSIM软件设计了20种仿真场景,结合道路实测数据验证了安全车速模型的对山地道路冰雪路面车辆安全行驶的提升作用。实测与结果表明:相比全程单一限速模型,所建立的安全车速模型在冰膜路面的行程时间缩短了约38%(小汽车)和32%(大客车),雪板路面的行程时间缩短了约26%(小汽车)和24%(大客车)。山地道路交通流量存在1个自由流到饱和流的相变过程,冰膜路面小汽车下行最大交通量为241辆/h(单向行驶)和231辆/h(双向行驶),大客车下行最大交通量为227辆/h(单向行驶)和222辆/h(双向行驶);雪板路面小汽车下行最大交通量为319辆/h(单向行驶)和249辆/h(双向行驶),大客车下行最大交通量为301辆/h(单向行驶)和236辆/h(双向行驶)。

     

  • 图  1  冬奥会延庆赛区山地道路二维平面示意图

    Figure  1.  The geometric of mountainous roads in Yanqing competition area of Beijing Winter Olympics

    图  2  道路三维空间模型算法流程图

    Figure  2.  The process of 3D spatial model of mountainous roads

    图  3  延庆赛区山地道路三维空间可视化图

    Figure  3.  3D spatial diagram of mountainous roads in the Yanqing competition area

    图  4  平纵组合路段车辆受力情况示意图

    Figure  4.  Schematic diagram of the vehicle forces on roadway geometric

    图  5  轿车安全车速图

    Figure  5.  The safety speed limit of cars

    图  6  大客车安全车速图

    Figure  6.  The safety speed limit of buses

    图  7  下坡行程安全车速和实测车速对比图

    Figure  7.  Comparison of safe speed and tested speed for the downward slope

    图  8  2种路面条件下道路通过车辆仿真结果

    Figure  8.  Simulation results of road traffic flow under ice and snow pavement

    图  9  2种路面条件下车辆行程时间仿真结果

    Figure  9.  Simulation results of travel time under ice and snow pavement

    表  1  不同路面附着系数

    Table  1.   Road adhesion coefficients of different road pavements

    路面 μ μh
    冰膜 0.1 0.06
    雪板 0.22 0.132
    下载: 导出CSV

    表  2  北京冬奥会专用车辆车型结构参数

    Table  2.   Structural parameters of vehicles for Beijing Winter Olympic

    车型 轴距l /m 质心至前轴距离l1 /m 质心至后轴距离l2 /m 质心高度hg/m
    轿车 2.6 1.2 1.4 0.5
    大客车 6.05 3.106 2.944 1.2
    下载: 导出CSV

    表  3  不同场景下路段行程时间结果

    Table  3.   Travel time results in different scenarios

    测试场景 路段行程时间/min
    车辆全部下行 上下行车辆比例1:1
    轿车 大客车 轿车 大客车
    实测数据 实验人1 26.54
    实验人2 25.39
    全程限速(km/h) 10 42.15 42.39 50.28 56.95
    15 28.3 28.52 37.15 39.28
    20 22.25 22.54 33.35 35.88
    安全车速 冰膜路面 26.16 28.83 31.05 34.08
    雪板路面 21.01 21.42 26.23 27.13
    下载: 导出CSV
  • [1] 陈航. 山地城市道路弯坡段交通安全的影响与评价[D]. 重庆: 重庆交通大学, 2018.

    CHEN H. Impact and evaluation of traffic safety on curved slope section of roads in mountainous cities[D]. Chongqing: Chongqing Jiaotong University, 2018. (in Chinese)
    [2] PADARTHY M, HEYNS E. Identification and classification of slippery winter road conditions using commonly available vehicle variables[J]. Transportation Research Record, 2019, 2673(2): 60-70. doi: 10.1177/0361198118823494
    [3] LIU Y, QIAO J, HU Y, et al. Determination of curve speed zones for mountainous freeways[J]. Mathematical Problems in Engineering, 2020(5): 1-11. http://www.xueshufan.com/publication/3108963695
    [4] ALREJJAL A, FARID A, KSAIBATI K. A correlated random parameters approach to investigate large truck rollover crashes on mountainous interstates[J]. Accident Analysis & Prevention, 2021(159): 106233. http://www.sciencedirect.com/science/article/pii/S0001457521002645
    [5] AHMED M, HUANG H, ABDEL-ATY M, et al. Exploring a Bayesian hierarchical approach for developing safety performance functions for a mountainous freeway[J]. Accident Analysis & Prevention, 2011, 43(4): 1581-1589. http://www.researchgate.net/profile/Mohamed_Ahmed104/publication/51101473_Exploring_a_Bayesian_hierarchical_approach_for_developing_safety_performance_functions_for_a_mountainous_freeway/links/54568d910cf2cf516480317f
    [6] UMEDA S, KAWASAKI Y, KUWAHARA M, et al. Risk evaluation of traffic standstills on winter roads using a state space model[J]. Transportation Research Part C: Emerging Technologies, 2021(125): 103005. http://www.nstl.gov.cn/paper_detail.html?id=6db3d4acd7001181d1ad2dc2699531f2
    [7] 李松龄, 裴玉龙. 冰雪路面公路平曲线路段限速仿真[J]. 哈尔滨工业大学学报, 2012, 44(10): 66-69. doi: 10.11918/j.issn.0367-6234.2012.10.014

    LI S, PEI Y. Speed limit simulation on highway horizontal curve section under the condition of ice and snow pavement[J]. Journal of Harbin Institute of Technology, 2012, 44 (10): 66-69. (in Chinese) doi: 10.11918/j.issn.0367-6234.2012.10.014
    [8] 刘伟. 山区高速公路不良气候条件下行车安全保障技术研究[D]. 西安: 长安大学, 2015.

    LIU W. Research on traffic safety technology under adverse climate in mountainous areas[D]. Xi'an: Chang'an University, China, 2015. (in Chinese)
    [9] 刘建蓓, 罗京, 郭腾峰. 基于安全容许速度的雨天公路可变限速方法[J]. 中国公路学报, 2015, 28(12): 128-133. doi: 10.3969/j.issn.1001-7372.2015.12.018

    LIU J B, LUO J, GUO T F. Variable speed limit method based on safe permissible speed under wet weather[J]. China Journal of Highway and Transport, 2015, 28(12): 128-133. (in Chinese) doi: 10.3969/j.issn.1001-7372.2015.12.018
    [10] SAHA P, AHMED M M, YOUNG R K. Safety effectiveness of variable speed limit system in adverse weather conditions on challenging roadway geometry[J]. Transportation Research Record, 2015, 2521(1): 45-53. doi: 10.3141/2521-05
    [11] YANG G, AHMED M M, GAWEESH S. Impact of variable speed limit in a connected vehicle environment on truck driver behavior under adverse weather conditions: driving simulator study[J]. Transportation Research Record, 2019, 2673 (7): 132-142. doi: 10.1177/0361198119842111
    [12] GAWEESH S M, AHMED M M. Evaluating the safety effectiveness of a weather-based variable speed limit for a rural mountainous freeway in Wyoming[J]. Journal of Transportation Safety & Security, 2020, 12(10): 1205-1230.
    [13] 姚冬冬, 马林, 陶鹏飞, 等. 冰雪条件下高速公路可变限速方法[J]. 吉林大学学报(信息科学版), 2020, 38(3): 258-265. doi: 10.3969/j.issn.1671-5896.2020.03.004

    YAO D, MA L, TAO P. Variable speed limit control method for freeway under snow and ice conditions[J]. Journal of Jilin University(Information Science Edition), 2020, 38(3): 258-265. (in Chinese) doi: 10.3969/j.issn.1671-5896.2020.03.004
    [14] MALIN F, NORROS I, INNAMAA S. Accident risk of road and weather conditions on different road types[J]. Accident Analysis & Prevention, 2019(122): 181-188. http://www.onacademic.com/detail/journal_1000040900319410_fea1.html
    [15] BOYLE P. Risk, resiliency, and urban governance: The case of the 2010 Winter Olympic Games[J]. Canadian Review of Sociology/Revue Canadienne de Sociologies, 2012, 49(4): 350-369. doi: 10.1111/j.1755-618X.2012.01301.x
    [16] KIM Y, BAIK N, KIM J. A study on development of mobile road surface condition detection system utilizing probe car[J]. Journal of Emerging Trends in Computing and Information Sciences, 2013, 4(10): 742-750. http://www.cisjournal.org/journalofcomputing/archive/vol4no10/vol4no10_2.pdf
    [17] 郭淑霞, 胡松, 王晓伟. 大型体育赛事场馆交通设施规划及交通组织: 以奥运场馆为例[J]. 城市交通, 2021, 19(04): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT202104009.htm

    GUO S X, HU S, WANG X W. Transportation infrastructure planning and organization strategies of venues in large-scale sports events: A case study of Olympic venues[J]. Urban Transport of China, 2021, 19(4): 48-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT202104009.htm
    [18] 冷慧康. 高速公路线形三维运动学分析方法与评价研究[D]. 成都: 西南交通大学, 2020.

    LENG H. Research on the method and evaluation of linear three-dimensional kinematics analysis of expressway[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [19] 吴艳霞, 刘剑, 黄帅, 等. 雨天高速公路纵坡对驾驶员心率及行车速度影响[J]. 交通信息与安全, 2021, 39(4): 35-42. doi: 10.3963/j.jssn.1674-4861.2021.04.005

    WU Y X, LIU J, HUANG S, et al. Influences of longitudinal slopes of highways on drivers' heart rate and driving speeds on rainy days[J]. Journal of Transport Information and Safety, 2021, 39(4): 35-42. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.04.005
    [20] DENG T, FU J, SHAO Y, et al. Pedal operation characteristics and driving workload on slopes of mountainous road based on naturalistic driving tests[J]. Safety Science, 2019 (119): 40-49. http://www.onacademic.com/detail/journal_1000040892030710_a475.html
    [21] YUE L, WANG H, PAZ A. An optimization design method of combination of steep slope and sharp curve sections for mountain highways[J]. Mathematical Problems in Engineering, 2019(4): 1-13. http://www.onacademic.com/detail/journal_1000042304472599_2611.html
    [22] 张智勇, 王晓燕, 董子恩. 冬奥赛区山地公路附着系数的敏感性分析研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(04): 612-616. doi: 10.3963/j.issn.2095-3844.2020.04.005

    ZHANG Z, WANG X, DONG Z. Sensitivity analysis of adhesion coefficient of mountainous highway in Winter Olympics Games area[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2020, 44(4): 612-616. (in Chinese) doi: 10.3963/j.issn.2095-3844.2020.04.005
    [23] 张杉, 庞明宝, 任泊宁. 冰雪道路环境下交通流微观仿真及事故率研究[J]. 中国安全科学学报, 2020, 30(1): 148-154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202001025.htm

    ZHANG S, PANG M, REN B. Microscopic simulation and accident probability of traffic flow in ice and snow environment[J]. China Safety Science Journal, 2020, 30(1): 148-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202001025.htm
    [24] HOOGENDOORN S, HOOGENDOORN R G, DAAMEN W. Wiedemann revisited: New trajectory filtering technique and its implications for car-following modeling[J]. Transportation Research Record, 2011, 2260(1): 152-162. doi: 10.3141/2260-17
    [25] 中华人民共和国住房和城乡建设部. 国家森林公园设计规范: GB/T 51046—2014[S]. 北京: 中国计划出版社, 2014.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of national forest park: GB/T 51046—2014[S]. Beijing: China Planning Press, 2014. (in Chinese)
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  791
  • HTML全文浏览量:  283
  • PDF下载量:  643
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 网络出版日期:  2022-09-17

目录

    /

    返回文章
    返回