留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不良气象微环境对机场道面抗滑性能影响分析

邢小亮 王孝存 张昱 高立晓 樊兆董

邢小亮, 王孝存, 张昱, 高立晓, 樊兆董. 不良气象微环境对机场道面抗滑性能影响分析[J]. 交通信息与安全, 2022, 40(1): 80-88. doi: 10.3963/j.jssn.1674-4861.2022.01.010
引用本文: 邢小亮, 王孝存, 张昱, 高立晓, 樊兆董. 不良气象微环境对机场道面抗滑性能影响分析[J]. 交通信息与安全, 2022, 40(1): 80-88. doi: 10.3963/j.jssn.1674-4861.2022.01.010
XING Xiaoliang, WANG Xiaocun, ZHANG Yu, GAO Lixiao, FAN Zhaodong. Influences of Adverse Meteorological Micro-environment on Skid Resistance of Airport Pavement[J]. Journal of Transport Information and Safety, 2022, 40(1): 80-88. doi: 10.3963/j.jssn.1674-4861.2022.01.010
Citation: XING Xiaoliang, WANG Xiaocun, ZHANG Yu, GAO Lixiao, FAN Zhaodong. Influences of Adverse Meteorological Micro-environment on Skid Resistance of Airport Pavement[J]. Journal of Transport Information and Safety, 2022, 40(1): 80-88. doi: 10.3963/j.jssn.1674-4861.2022.01.010

不良气象微环境对机场道面抗滑性能影响分析

doi: 10.3963/j.jssn.1674-4861.2022.01.010
基金项目: 

国家自然科学基金项目 71673201

民航机场安全与运行工程技术研究中心开放课题项目 KFKT2021-04

详细信息
    作者简介:

    邢小亮(1988—),博士研究生. 研究方向:交通安全与环境、道路规划与几何设计等. E-mail:835950648@qq.com

    通讯作者:

    王孝存(1975—),博士,高级工程师. 研究方向:机场工程. E-mail:44165756@qq.com

  • 中图分类号: U491.2+51

Influences of Adverse Meteorological Micro-environment on Skid Resistance of Airport Pavement

  • 摘要: 不良气象微环境直接影响机场区域道面使用性能及安全性。在剖析不良气象微环境作用机理基础上,利用环境舱模拟道面结冰试验,探究了不同气象微环境条件下的关键控制因子与摩擦系数的耦合作用规律,建立了水膜、积雪、结冰厚度与道面的抗滑性能预测模型。研究结果表明:厚冰道面摩擦系数介于0.09~ 0.15,抗滑性能最差;薄冰+水、厚冰+水及薄冰道面优于厚冰道面,但不满足场道飞机及作业车辆的安全运营需求;积雪道面摩擦系数介于0.37~0.46,但受荷载压实易形成光滑道面,影响机场区域交通安全。通过多元非线性数据回归耦合作用分析,建立了水膜、积雪、结冰厚度与机场道面抗滑性能关系模型。经拟合优度及显著性检验分析可知,提出的模型拟合优度均大于0.8,满足收敛和显著性检验要求,在实际机场道面抗滑性能安全预测预警应用中具有统计学意义。

     

  • 图  1  不同气象微环境下机场道面水的存在形式

    Figure  1.  Existence forms of airport pavement water under different meteorological micro environments

    图  2  路域环境模拟实验系统

    Figure  2.  Road domain environment simulation experiment system

    图  3  试验设备

    Figure  3.  Test equipment

    图  4  干燥状态道面摩擦系数随环境温度变化

    Figure  4.  Variation of friction coefficient of dry pavement with ambient temperature

    图  5  雪泥道面

    Figure  5.  Snow-mud pavement

    图  6  雪泥道面厚度与摩擦系数变化

    Figure  6.  Variation of thickness and friction coefficient of snow-mud pavement

    图  7  积雪道面

    Figure  7.  Snow pavement

    图  8  积雪厚度与摩擦系数变化

    Figure  8.  Variation of snow thickness and friction coefficient

    图  9  薄冰道面摩擦系数变化规律

    Figure  9.  Variation of friction coefficient of thin ice pavement

    图  10  冰层、水膜厚度箱型图

    Figure  10.  Box diagram of ice sheet and water film thickness

    图  11  厚冰道面摩擦系数变化

    Figure  11.  Variation of friction coefficient of thick ice pavement

    图  12  结冰道面参数与抗滑性能拟合

    Figure  12.  Fitting of icing pavement parameters and skid resistance

    图  13  薄冰+水混合道面抗滑性能拟合曲线

    Figure  13.  Fitting curve of skid resistance of thin ice & water mixed pavement

    图  14  厚冰+水混合道面控制因子与抗滑性能拟合曲面

    Figure  14.  Fitting surface between control factor and skid resistance of thick ice & water mixed pavement

    图  15  积雪道面与抗滑性能拟合曲线

    Figure  15.  Fitting curve of snow pavement and skid resistance

    表  1  试验控制因素

    Table  1.   Control factors of the test

    道面特征 冰层厚度/mm 雪层厚度/cm 表面温度/℃ 道面工况
    冰层 0.3/1 0~-15 黑冰/冻雨/融化结冰
    积雪 0.5~2 -5,-10, -15 降雪/融雪后再降雪
    雪泥 0.1 1 -5 雨夹雪/碾压积雪融化
    下载: 导出CSV

    表  2  试验数据统计

    Table  2.   Test data statistics

    均值 标准差 最小值 中位数 最大值
    路面温度/C -6.21 2.72 -10.08 -6.23 -2.14
    摩擦系数 0.63 0.05 0.58 0.62 0.72
    下载: 导出CSV

    表  3  机场道面结冰关键控制因子

    Table  3.   Key control factors of airport pavement icing

    道面类型 摩擦系数 控制因子 抗滑性能
    干燥道面 0.58~0.72 道面温度
    结冰道面 薄冰 0.15~0.31 道面温度 较差
    厚冰 0.09~0.15 冰层厚度 极差
    雪泥道面 薄冰+水 0.18~0.63 水膜厚度
    厚冰+水 0.13~0.16 水膜厚度
    积雪道面 0.37~0.46 积雪厚度
    下载: 导出CSV
  • [1] 游庆龙, 赵胜前, 罗志刚, 等. 机场复合式道面力学响应敏感性分析[J]. 公路交通科技, 2021, 38(1): 50-58. doi: 10.3969/j.issn.1002-0268.2021.01.007

    YOU Q L, ZHAO S Q, LUO Z G, et al. Analysis on sensitivity of mechanical response of airfield composite pavement[J]. Journal of Highway and Transportation Research and Development, 2021, 38(1): 50-58. (in Chinese) doi: 10.3969/j.issn.1002-0268.2021.01.007
    [2] 谌偲翔. 机场道面沥青加铺层受力特性与裂缝修复研究[D]. 南京: 东南大学, 2018.

    CHEN C X. The study on mechanical characteristics and crack repair of asphalt overlay on airfield pavement[D]. Nanjing: Southeast University, 2018. (in Chinese)
    [3] 汤新民, 吴淼, 高尚峰, 等. 机场场面多传感器多轴向感知信号的融合方法[J]. 交通信息与安全, 2016, 34(2): 17-24. doi: 10.3963/j.issn1674-4861.2016.02.003

    TANG X M, WU M, GAO S F, et al. A multi-axis signal fusion approach using multiple sensors of the aerodrome surface[J]. Journal of Transport Information and Safety, 2016, 34 (2): 17-24. (in Chinese) doi: 10.3963/j.issn1674-4861.2016.02.003
    [4] AHMMED M A, TIGHE S. Concrete pavement surface textures and multivariables frictional performance analysis: a North American case study[J]. Canadian Journal of Civil Engineering, 2008, 35(7): 727-738. doi: 10.1139/L08-025
    [5] 葛东华, 岑国平, 张文华. 机场水泥混凝土道面表面抗滑工艺试验研究[J]. 路基工程, 2011(2): 99-101. doi: 10.3969/j.issn.1003-8825.2011.02.032

    GE D H, CEN G P, ZHANG W H. Experimental study on surface anti-slide technology for airport cement concrete pavement[J]. Subgrade Engineering, 2011(2): 99-101. (in Chinese) doi: 10.3969/j.issn.1003-8825.2011.02.032
    [6] 杨慧, 刘佳玮, 张忠陵. 军民合用机场混凝土道面表面特性一致性分析[J]. 空军工程大学学报(自然科学版), 2015, 16 (5): 39-42. doi: 10.3969/j.issn.1009-3516.2015.05.010

    YANG H, LIU J W, ZHANG Z L. Analysis of military-civilian airport concrete pavement surface characteristics of consistency[J]. Journal of Air Force Engineering University(Natural Science Edition), 2015, 16(5): 39-42. (in Chinese) doi: 10.3969/j.issn.1009-3516.2015.05.010
    [7] RADO Z, KANE M. An initial attempt to develop an empirical relation between texture and pavement friction using the HHT approach[J]. Wear, 2014, 309(1/2): 233-246. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0043164813005590&originContentFamily=serial&_origin=article&_ts=1413672334&md5=a47ee29ca2833e5cd9b8e4296e2fd9e2
    [8] KANE M, RADO Z, TIMMONS A. Exploring the texture-friction relationship: from texture empirical decomposition to pavement friction[J]. International Journal of Pavement Engineering, 2014, 16(9/10): 919-928. http://www.onacademic.com/detail/journal_1000038232897510_a24a.html
    [9] FERNANDES A, NEVES J. Threshold values of pavement surface properties for maintenance purposes based on accidents modelling[J]. International Journal of Pavement Engineering, 2014, 15(10): 917-924. doi: 10.1080/10298436.2014.893324
    [10] 赵方冉, 巩金海, 常媛媛. 基于表面构造的水泥混凝土道面抗滑模型[J]. 交通运输工程学报, 2012, 12(4): 17-24. doi: 10.3969/j.issn.1671-1637.2012.04.003

    ZHANG F R, GONG J H, CHANG Y Y. Anti-slide model of cement concrete pavement based on surface texture[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 17-24. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.04.003
    [11] 赵方冉, 邱团结, 张皓. 宏观构造特征对水泥混凝土道面抗滑性的影响[J]. 中国公路学报, 2016, 29(7): 15-21. doi: 10.3969/j.issn.1001-7372.2016.07.003

    ZHANG F R, QIU T J, ZHANG H. Effect of macro-texture features on anti-sliding characteristics of cement concrete pavement[J]. China Journal of Highway and Transport, 2016, 29(7): 15-21. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.07.003
    [12] EI-DESOUKY A. Investigating the effect of temperature variations on the measured airfield pavement skid resistance[J]. Construction and Building Materials, 2018(161): 649-653. http://www.ingentaconnect.com/content/el/09500618/2018/00000161/00000001/art00019
    [13] 钱振东, 孟凡奇, 曾靖. 高性能沥青混凝土机场道面结构[J]. 东南大学学报(自然科学版), 2015, 45(3): 575-580. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201503028.htm

    QIAN Z D, MENG F Q, ZENG J. Airfield pavement with high performance asphalt concrete[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(3): 575-580. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201503028.htm
    [14] 冉武平, 凌建明, 赵鸿铎. 基于加速加载的环氧沥青混凝土道面轮辙特性[J]. 建筑材料学报, 2016, 19(2): 330-335. doi: 10.3969/j.issn.1007-9629.2016.02.020

    RAN W P, LING J M, ZHAO H D. Characteristics of epoxy asphalt pavement rutting based on accelerated pavement test[J]. Journal of Building Materials, 2016, 19(2): 330-335. (in Chinese) doi: 10.3969/j.issn.1007-9629.2016.02.020
    [15] 马翔, 倪富健, 陈荣生. 复合式机场道面荷载应力[J]. 长安大学学报(自然科学版), 2010, 30(4): 23-27+33. doi: 10.3969/j.issn.1671-8879.2010.04.005

    MA X, NI F J, CHEN R S. Load stress of composite airport pavement[J]. Journal of Chang'an University(Natural Science Edition), 2010, 30(4): 23-27+33. (in Chinese) doi: 10.3969/j.issn.1671-8879.2010.04.005
    [16] 许奕杰, 王嵘, 万永菁, 等. 基于AE-LSTM网络模型的机场周界入侵报警及分类算法[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 323-330. https://www.cnki.com.cn/Article/CJFDTOTAL-HLDX202103010.htm

    XU Y J, WANG R, WAN Y J, et al. Airport perimeter intrusion alarm and classification algorithm based on AE-LSTM network model[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2021, 47 (3): 323-330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLDX202103010.htm
    [17] 刘芳, 夏洪山, 艾军, 等. 基于PG值的机场道面沥青抗老化性能预估模型[J]. 建筑材料学报, 2017, 20(1): 73-77. doi: 10.3969/j.issn.1007-9629.2017.01.013

    LIU F, XIA H S, AI J, et al. Prediction model of asphalt anti-aging performance in airport pavement based on PG value[J]. Journal of Building Materials, 2017, 20(1): 73-77. (in Chinese) doi: 10.3969/j.issn.1007-9629.2017.01.013
    [18] 凌建明, 郑悦锋, 袁捷. 机场沥青混凝土道面剩余寿命预测方法研究[J]. 同济大学学报(自然科学版), 2004, 32(4): 471-474. doi: 10.3321/j.issn:0253-374X.2004.04.011

    LING J M, ZHENG Y F, YUAN J. Prediction model of remaining life for asphalt concrete pavement of runway[J]. Journal of Tongji University(Natural Science), 2004, 32(4): 471-474. (in Chinese) doi: 10.3321/j.issn:0253-374X.2004.04.011
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  278
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 网络出版日期:  2022-03-31

目录

    /

    返回文章
    返回